Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)

 Download zip file 
Help downloading and running models
We are investigating how dopaminergic modulation of single channels can be combined to make the D1R possitive MSN more excitable. We also connect multiple channels to substrates of a dopamine induced subcellular cascade to highlight that the classical pathway is too slow to explain DA induced kinetics in the subsecond range (Howe and Dombeck, 2016. doi: 10.1038/nature18942)
1 . Lindroos R, Dorst MC, Du K, Filipovic M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J (2018) Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 12:3 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Axon; Channel/Receptor; Dendrite; Molecular Network; Synapse; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia; Striatum;
Cell Type(s): Neostriatum medium spiny direct pathway neuron; Neostriatum spiny neuron;
Channel(s): I A; I A, slow; I Calcium; I CAN; I K; I K,Ca; I K,leak; I Krp; I Na,t; I Potassium; I R; I T low threshold; Kir;
Gap Junctions:
Receptor(s): D1; Dopaminergic Receptor; AMPA; Gaba; NMDA;
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Detailed Neuronal Models; Electrical-chemical; G-protein coupled; Membrane Properties; Neuromodulation; Multiscale; Synaptic noise;
Implementer(s): Lindroos, Robert [robert.lindroos at]; Du, Kai [kai.du at]; Keller, Daniel ; Kozlov, Alexander [akozlov at];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway neuron; D1; AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,t; I T low threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Calcium; I Potassium; I A, slow; I Krp; I R; Kir; Dopamine; Gaba; Glutamate;
TITLE GABA_A synapse with short-term plasticity

    RANGE tau1, tau2, e, i, q
    RANGE tau, tauR, tauF, U, u0
    RANGE base, f_gaba
    POINTER pka

    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)

    tau1= 0.5 (ms)
    tau2 = 7.5 (ms)  : tau2 > tau1
    e = -60 (mV)
    tau = 3 (ms)
    tauR = 500 (ms)  : tauR > tau
    tauF = 0 (ms)    : tauF >= 0
    U = 0.1 (1) <0, 1>
    u0 = 0 (1) <0, 1>
    q = 2
    base   = 0.0      : set in simulation file    
	f_gaba = 0.0      : set in simulation file

    v (mV)
    i (nA)
    g (uS)
    pka (1)

    A (uS)
    B (uS)

    LOCAL tp
    A = 0
    B = 0
    tp = (tau1*tau2)/(tau2-tau1) * log(tau2/tau1)
    factor = -exp(-tp/tau1) + exp(-tp/tau2)
    factor = 1/factor
    tau1 = tau1/q
    tau2 = tau2/q

    SOLVE state METHOD cnexp
    g = B - A
    i = modulation(f_gaba)*g*(v - e)

    A' = -A/tau1
    B' = -B/tau2

NET_RECEIVE(weight (uS), y, z, u, tsyn (ms)) {
        y = 0
        z = 0
        u = u0
        tsyn = t
    z = z*exp(-(t-tsyn)/tauR)
    z = z + (y*(exp(-(t-tsyn)/tau) - exp(-(t-tsyn)/tauR)) / (tau/tauR - 1) )
    y = y*exp(-(t-tsyn)/tau)
    x = 1-y-z
    if (tauF > 0) {
        u = u*exp(-(t-tsyn)/tauF)
        u = u + U*(1-u)
    } else {
        u = U
    A = A + weight*factor*x*u
    B = B + weight*factor*x*u
    y = y + x*u
    tsyn = t

FUNCTION modulation(modFact) {
    : returns modulation factor
    modulation = 1 + modFact * (pka - base)


Implementation of GABA_A synapse model with short-term facilitation
and depression based on modified tmgsyn.mod [1] by Tsodyks et al [2].
Choice of time constants follows [3].  NEURON implementation by Alexander
Kozlov <>.

[1] tmgsyn.mod, ModelDB (,
accession number 3815.

[2] Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent
networks with frequency-dependent synapses. J Neurosci. 20(1):RC50.

[3] Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M,
O'Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions
and entrainment to oscillations in a computational model of the nucleus
accumbens medium spiny projection neuron. J Neurosci 25(40):9080-95.

Loading data, please wait...