Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:240116
"[...] experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layers. [...]"
References:
1 . Cavarretta F, Burton SD, Igarashi KM, Shepherd GM, Hines ML, Migliore M (2018) Parallel odor processing by mitral and middle tufted cells in the olfactory bulb. Sci Rep 8:7625 [PubMed]
2 . Cavarretta F, Marasco A, Hines ML, Shepherd GM, Migliore M (2016) Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb. Front Comput Neurosci 10:67 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main tufted middle GLU cell; Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main interneuron granule TC GABA cell; Olfactory bulb (accessory) mitral cell; Olfactory bulb main tufted cell external; Olfactory bulb short axon cell;
Channel(s): I A; I Na,t; I_Ks; I K;
Gap Junctions: Gap junctions;
Receptor(s): AMPA; GabaA; NMDA;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Action Potential Initiation; Active Dendrites; Long-term Synaptic Plasticity; Synaptic Integration; Synchronization; Pattern Recognition; Spatio-temporal Activity Patterns; Temporal Pattern Generation; Sensory coding; Sensory processing; Olfaction;
Implementer(s): Cavarretta, Francesco [francescocavarretta at hotmail.it]; Hines, Michael [Michael.Hines at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main tufted middle GLU cell; Olfactory bulb main interneuron granule TC GABA cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; I_Ks; Gaba; Glutamate;
/
modeldb-bulb3d
sim
ampanmda.mod
distrt.mod *
fi.mod
fi_stdp.mod *
gap.mod
Gfluct.mod
kamt.mod
kdrmt.mod
ks.mod
naxn.mod
orn.mod
ThreshDetect.mod *
all.py
all2all.py *
assembly.py
balance.py *
bindict.py
binsave.py
binspikes.py
blanes.hoc
blanes.py
blanes_exc_conn.txt
blanes6.dic
bulb3dtest.py
cancel.py
catfiles.sh
cellreader.py
cellwriter.py
cfg27.py
common.py
complexity.py *
convertdic.py
destroy_model.py
determine_connections.py
distribute.py *
dsac.py
Eta.txt *
fillgloms.py
fixnseg.hoc *
g_conn_stats.py
gapjunc.py
gen_weights.py
geodist.py
geodist.txt
getmitral.py
gidfunc.py
GJ.py
gj_nrn.hoc
Glom.py *
granule.hoc
granules.py
graphmeat.py
grow.py
growdef.py *
growout.py
job
Kod.txt *
lateral_connections.py
loadbalutil.py *
lpt.py *
mcgrow.py
MCrealSoma.py *
mgrs.py
misc.py
mitral.hoc
mkassembly.py
mkmitral.py
modeldata.py
mtgrow.py
MTrealSoma.py
MTrealSoma2.py
mtufted.hoc
multisplit_distrib.py
net_mitral_centric.py
Nod.txt *
odors.py
odorstim.py
odstim2.txt *
pad.txt *
params.py
parrun.py
pathdist.py
realgloms.txt *
runsim.py
spike2file.hoc *
spk2weight.py
split.py
subsetsim.py
test_complexity.py
txt2bin.py
util.py *
vrecord.py
weightsave.py
                            
TITLE Fluctuating conductances

COMMENT
-----------------------------------------------------------------------------

	Fluctuating conductance model for synaptic bombardment
	======================================================

THEORY

  Synaptic bombardment is represented by a stochastic model containing
  two fluctuating conductances g_e(t) and g_i(t) descibed by:

     Isyn = g_e(t) * [V - E_e] + g_i(t) * [V - E_i]
     d g_e / dt = -(g_e - g_e0) / tau_e + sqrt(D_e) * Ft
     d g_i / dt = -(g_i - g_i0) / tau_i + sqrt(D_i) * Ft

  where E_e, E_i are the reversal potentials, g_e0, g_i0 are the average
  conductances, tau_e, tau_i are time constants, D_e, D_i are noise diffusion
  coefficients and Ft is a gaussian white noise of unit standard deviation.

  g_e and g_i are described by an Ornstein-Uhlenbeck (OU) stochastic process
  where tau_e and tau_i represent the "correlation" (if tau_e and tau_i are 
  zero, g_e and g_i are white noise).  The estimation of OU parameters can
  be made from the power spectrum:

     S(w) =  2 * D * tau^2 / (1 + w^2 * tau^2)

  and the diffusion coeffient D is estimated from the variance:

     D = 2 * sigma^2 / tau


NUMERICAL RESOLUTION

  The numerical scheme for integration of OU processes takes advantage 
  of the fact that these processes are gaussian, which led to an exact
  update rule independent of the time step dt (see Gillespie DT, Am J Phys 
  64: 225, 1996):

     x(t+dt) = x(t) * exp(-dt/tau) + A * N(0,1)

  where A = sqrt( D*tau/2 * (1-exp(-2*dt/tau)) ) and N(0,1) is a normal
  random number (avg=0, sigma=1)


IMPLEMENTATION

  This mechanism is implemented as a nonspecific current defined as a
  point process.


PARAMETERS

  The mechanism takes the following parameters:

     E_e = 0  (mV)		: reversal potential of excitatory conductance
     E_i = -75 (mV)		: reversal potential of inhibitory conductance

     g_e0 = 0.0121 (umho)	: average excitatory conductance
     g_i0 = 0.0573 (umho)	: average inhibitory conductance

     std_e = 0.0030 (umho)	: standard dev of excitatory conductance
     std_i = 0.0066 (umho)	: standard dev of inhibitory conductance

     tau_e = 2.728 (ms)		: time constant of excitatory conductance
     tau_i = 10.49 (ms)		: time constant of inhibitory conductance


Gfluct3: conductance cannot be negative


REFERENCE

  Destexhe, A., Rudolph, M., Fellous, J-M. and Sejnowski, T.J.  
  Fluctuating synaptic conductances recreate in-vivo--like activity in
  neocortical neurons. Neuroscience 107: 13-24 (2001).

  (electronic copy available at http://cns.iaf.cnrs-gif.fr)


  A. Destexhe, 1999

-----------------------------------------------------------------------------
ENDCOMMENT



INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS Gfluct
	RANGE g_e, g_i, E_e, E_i, g_e0, g_i0, g_e1, g_i1
	RANGE std_e, std_i, tau_e, tau_i, D_e, D_i
	RANGE new_seed
	NONSPECIFIC_CURRENT i
        
        THREADSAFE : only true if every instance has its own distinct Random
        POINTER donotuse
}

UNITS {
	(nA) = (nanoamp) 
	(mV) = (millivolt)
	(umho) = (micromho)
}

PARAMETER {
	dt		(ms)

	E_e	= 0 	(mV)	: reversal potential of excitatory conductance
	E_i	= -75 	(mV)	: reversal potential of inhibitory conductance

	g_e0	= 0.0121 (umho)	: average excitatory conductance
	g_i0	= 0.0573 (umho)	: average inhibitory conductance

	std_e	= 0.0030 (umho)	: standard dev of excitatory conductance
	std_i	= 0.0066 (umho)	: standard dev of inhibitory conductance

	tau_e	= 3	(ms)	: time constant of excitatory conductance
	tau_i	= 10.49	(ms)	: time constant of inhibitory conductance
}

ASSIGNED {
	v	(mV)		: membrane voltage
	i 	(nA)		: fluctuating current
	g_e	(umho)		: total excitatory conductance
	g_i	(umho)		: total inhibitory conductance
	g_e1	(umho)		: fluctuating excitatory conductance
	g_i1	(umho)		: fluctuating inhibitory conductance
	D_e	(umho umho /ms) : excitatory diffusion coefficient
	D_i	(umho umho /ms) : inhibitory diffusion coefficient
	exp_e
	exp_i
	amp_e	(umho)
	amp_i	(umho)

        donotuse
}

INITIAL {
	g_e1 = 0
	g_i1 = 0
	if(tau_e != 0) {
		D_e = 2 * std_e * std_e / tau_e
		exp_e = exp(-dt/tau_e)
		amp_e = std_e * sqrt( (1-exp(-2*dt/tau_e)) )
	}
	if(tau_i != 0) {
		D_i = 2 * std_i * std_i / tau_i
		exp_i = exp(-dt/tau_i)
		amp_i = std_i * sqrt( (1-exp(-2*dt/tau_i)) )
	}
}

BREAKPOINT {
	SOLVE oup
	if(tau_e==0) {
	   g_e = std_e * normrand123()
	}
	if(tau_i==0) {
	   g_i = std_i * normrand123()
	}
	g_e = g_e0 + g_e1
	if(g_e < 0) { g_e = 0 }
	g_i = g_i0 + g_i1
	if(g_i < 0) { g_i = 0 }
	i = g_e * (v - E_e) + g_i * (v - E_i)
}


PROCEDURE oup() {		: use Scop function normrand(mean, std_dev)
   if(tau_e!=0) {
	g_e1 =  exp_e * g_e1 + amp_e * normrand123()
   }
   if(tau_i!=0) {
	g_i1 =  exp_i * g_i1 + amp_i * normrand123()
   }
}


PROCEDURE new_seed(seed) {		: procedure to set the seed
	set_seed(seed)
:	VERBATIM
:	  printf("Setting random generator with seed = %g\n", _lseed);
:	ENDVERBATIM
}


VERBATIM
double nrn_random_pick(void* r);
void* nrn_random_arg(int argpos);
ENDVERBATIM

FUNCTION normrand123() {
VERBATIM
	if (_p_donotuse) {
		/*
		:Supports separate independent but reproducible streams for
		: each instance. However, the corresponding hoc Random
		: distribution MUST be set to Random.negexp(1)
		*/
		_lnormrand123= nrn_random_pick(_p_donotuse);
	}else{
		/* only can be used in main thread */
		if (_nt != nrn_threads) {
hoc_execerror("multithread random in NetStim"," only via hoc Random");
		}
ENDVERBATIM
		: the old standby. Cannot use if reproducible parallel sim
		: independent of nhost or which host this instance is on
		: is desired, since each instance on this cpu draws from
		: the same stream
		normrand123 = normrand(0,1)
VERBATIM
	}
ENDVERBATIM
}

PROCEDURE noiseFromRandom() {
VERBATIM
 {
	void** pv = (void**)(&_p_donotuse);
	if (ifarg(1)) {
		*pv = nrn_random_arg(1);
	}else{
		*pv = (void*)0;
	}
 }
ENDVERBATIM
}


Loading data, please wait...