STDP and BDNF in CA1 spines (Solinas et al. 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:244412
Storing memory traces in the brain is essential for learning and memory formation. Memory traces are created by joint electrical activity in neurons that are interconnected by synapses and allow transferring electrical activity from a sending (presynaptic) to a receiving (postsynaptic) neuron. During learning, neurons that are co-active can tune synapses to become more effective. This process is called synaptic plasticity or long-term potentiation (LTP). Timing-dependent LTP (t-LTP) is a physiologically relevant type of synaptic plasticity that results from repeated sequential firing of action potentials (APs) in pre- and postsynaptic neurons. T-LTP is observed during learning in vivo and is a cellular correlate of memory formation. T-LTP can be elicited by different rhythms of synaptic activity that recruit distinct synaptic growth processes underlying t-LTP. The protein brain-derived neurotrophic factor (BDNF) is released at synapses and mediates synaptic growth in response to specific rhythms of t-LTP stimulation, while other rhythms mediate BDNF-independent t-LTP. Here, we developed a realistic computational model that accounts for our previously published experimental results of BDNF-independent 1:1 t-LTP (pairing of 1 presynaptic with 1 postsynaptic AP) and BDNF-dependent 1:4 t-LTP (pairing of 1 presynaptic with 4 postsynaptic APs). The model explains the magnitude and time course of both t-LTP forms and allows predicting t-LTP properties that result from altered BDNF turnover. Since BDNF levels are decreased in demented patients, understanding the function of BDNF in memory processes is of utmost importance to counteract Alzheimer’s disease.
Reference:
1 . Solinas SMG, Edelmann E, Leßmann V, Migliore M (2019) A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS Comput Biol 15:e1006975 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I_KD; I K; I h; I A; I Calcium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Facilitation; Long-term Synaptic Plasticity; Short-term Synaptic Plasticity; STDP;
Implementer(s): Solinas, Sergio [solinas at unipv.it]; Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I Na,t; I A; I K; I h; I Calcium; I_KD; Glutamate;
/
SolinasEtAl2019
mod_files
BDNF.mod
cad.mod
cagk.mod
cal2.mod
can2.mod
cat.mod
distr.mod *
ghknmda.mod
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstims.mod *
RM_eCB.mod
Wghkampa_preML.mod
                            
TITLE I-h channel from Magee 1998 for distal dendrites

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
        ehd  		(mV)        
	celsius 	(degC)
	ghdbar=.0001 	(mho/cm2)
        vhalfl=-81   	(mV)
	kl=-8
        vhalft=-75   	(mV)
        a0t=0.011      	(/ms)
        zetat=2.2    	(1)
        gmt=.4   	(1)
	q10=4.5
	qtl=1
}


NEURON {
	SUFFIX hd
	NONSPECIFIC_CURRENT i
        RANGE ghdbar, vhalfl
        GLOBAL linf,taul
}

STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
        linf      
        taul
        ghd
}

INITIAL {
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = ghdbar*l
	i = ghd*(v-ehd)

}


FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft)) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1 + exp(-(v-vhalfl)/kl))
:       linf = 1/(1+ alpl(v))
        taul = bett(v)/(qtl*qt*a0t*(1+a))
}















Loading data, please wait...