CA1 network model for place cell dynamics (Turi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:246546
Biophysical model of CA1 hippocampal region. The model simulates place cells/fields and explores the place cell dynamics as function of VIP+ interneurons.
Reference:
1 . Turi GF, Li W, Chavlis S, Pandi I, O’Hare J, Priestley JB, Grosmark AD, Liao Z, Ladow M, Zhang JF, Zemelman BV, Poirazi P, Losonczy A (2019) Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning Neuron
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell; Hippocampus CA1 basket cell - CCK/VIP; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 stratum oriens lacunosum-moleculare interneuron ; Hippocampal CA1 CR/VIP cell;
Channel(s): I A; I h; I K,Ca; I Calcium; I Na, leak; I K,leak; I M;
Gap Junctions:
Receptor(s): GabaA; GabaB; NMDA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Brian;
Model Concept(s): Place cell/field;
Implementer(s): Chavlis, Spyridon [schavlis at imbb.forth.gr]; Pandi, Ioanna ;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I A; I K,leak; I M; I h; I K,Ca; I Calcium; I Na, leak;
/
Turi_et_al_2018
mechanisms
ANsyn.mod
bgka.mod
burststim2.mod *
cad.mod
cadyn.mod
cadyn_new.mod
cagk.mod *
cal.mod
calH.mod *
cancr.mod
car.mod *
cat.mod
ccanl.mod *
gskch.mod
h.mod
hha_old.mod *
hha2.mod
hNa.mod *
IA.mod
iccr.mod
ichan2.mod
ichan2aa.mod
ichan2bc.mod
ichan2bs.mod
ichan2vip.mod
Ih.mod *
Ihvip.mod
ikscr.mod *
kad.mod *
kadistcr.mod
kap.mod
Kaxon.mod
kca.mod
Kdend.mod
kdrcr.mod *
km.mod
Ksoma.mod
LcaMig.mod *
my_exp2syn.mod
Naaxon.mod
Nadend.mod
nafcr.mod *
nap.mod
Nasoma.mod
nca.mod *
nmda.mod
regn_stim.mod
somacar.mod
STDPE2Syn.mod *
vecstim.mod *
                            
COMMENT
A synaptic current with two dual exponential function conductances,
representing non-voltage-dependent AMPA and voltage-dependent NMDA
components.  The basic dual exponential conductance is given by:
         g = 0 for t < onset and
         g = gmax*((tau1*tau2)/(tau1-tau2)) * (exp(-(t-onset)/tau1)-exp(-(t-onset)/tau2))
         for t > onset (tau1 and tau2 are fast and slow time constants)
The synaptic current is:
        i = (gA + gN) * (v - e)      i(nanoamps), g(micromhos);
NMDA model taken from Mel, J. Neurophys. 70:1086-1101, 1993
BPG 1-12-00
ENDCOMMENT
                           
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
    POINT_PROCESS ANSynapse
    RANGE onset, gmax, e, i, g, gA, gN, tau1, tau2, Ntau1, Ntau2, eta, Mg, gamma, Nfrac
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (umho) = (micromho)
}

PARAMETER {
    onset=0 (ms)
    tau1=.2 (ms)    <1e-3,1e6>
    tau2=2 (ms)    <1e-3,1e6>
    Nfrac=0.5
    Ntau1=.66 (ms)    <1e-3,1e6>
    Ntau2=80 (ms)    <1e-3,1e6>
    eta=0.33 (/mM)
    Mg=1 (mM)
    gamma=0.06 (/mV)
    gmax=0  (umho)  <0,1e9>
    e=0 (mV)
    v   (mV)
}

ASSIGNED { i (nA)  g (umho) gA (umho) gN (umho) Agmax (umho) Ngmax (umho)}

INITIAL {
    Agmax = (1-Nfrac)*gmax
    Ngmax = Nfrac*gmax
}

BREAKPOINT {
    gA = Agmax*((tau1*tau2)/(tau1-tau2))*duale((t-onset)/tau1,(t-onset)/tau2)
    gN = Ngmax*((Ntau1*Ntau2)/(Ntau1-Ntau2))*duale((t-onset)/Ntau1,(t-onset)/Ntau2)
    gN = gN / (1 + (eta*Mg*exp(-gamma*v)))
    g = gA + gN
    i = g*(v - e)
}

FUNCTION duale(x,y) {
    if (x < 0 || y < 0) {
        duale = 0
    }else{
        duale = exp(-x) - exp(-y)
    }
}

Loading data, please wait...