CA1 network model for place cell dynamics (Turi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:246546
Biophysical model of CA1 hippocampal region. The model simulates place cells/fields and explores the place cell dynamics as function of VIP+ interneurons.
Reference:
1 . Turi GF, Li W, Chavlis S, Pandi I, O’Hare J, Priestley JB, Grosmark AD, Liao Z, Ladow M, Zhang JF, Zemelman BV, Poirazi P, Losonczy A (2019) Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning Neuron
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell; Hippocampus CA1 basket cell - CCK/VIP; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 stratum oriens lacunosum-moleculare interneuron ; Hippocampal CA1 CR/VIP cell;
Channel(s): I A; I h; I K,Ca; I Calcium; I Na, leak; I K,leak; I M;
Gap Junctions:
Receptor(s): GabaA; GabaB; NMDA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Brian;
Model Concept(s): Place cell/field;
Implementer(s): Chavlis, Spyridon [schavlis at imbb.forth.gr]; Pandi, Ioanna ;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I A; I K,leak; I M; I h; I K,Ca; I Calcium; I Na, leak;
/
Turi_et_al_2018
mechanisms
ANsyn.mod
bgka.mod
burststim2.mod *
cad.mod
cadyn.mod
cadyn_new.mod
cagk.mod *
cal.mod
calH.mod *
cancr.mod
car.mod *
cat.mod
ccanl.mod *
gskch.mod
h.mod
hha_old.mod *
hha2.mod
hNa.mod *
IA.mod
iccr.mod
ichan2.mod
ichan2aa.mod
ichan2bc.mod
ichan2bs.mod
ichan2vip.mod
Ih.mod *
Ihvip.mod
ikscr.mod *
kad.mod *
kadistcr.mod
kap.mod
Kaxon.mod
kca.mod
Kdend.mod
kdrcr.mod *
km.mod
Ksoma.mod
LcaMig.mod *
my_exp2syn.mod
Naaxon.mod
Nadend.mod
nafcr.mod *
nap.mod
Nasoma.mod
nca.mod *
nmda.mod
regn_stim.mod
somacar.mod
STDPE2Syn.mod *
vecstim.mod *
                            
TITLE Borg-Graham type generic K-A channel

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
    v (mV)
    ek (mV)
    celsius 	(degC)
    gkabar=.01 (mho/cm2)
    vhalfn=-33.6   (mV)
    vhalfl=-83   (mV)
    a0l=0.08      (/ms)
    a0n=0.02    (/ms)
    zetan=-3    (1)
    zetal=4    (1)
    gmn=0.6   (1)
    gml=1   (1)
}


NEURON {
	SUFFIX borgka
	USEION k READ ek WRITE ik
    RANGE gkabar,gka, ik
    GLOBAL ninf,linf,taul,taun
}

STATE {
	n
    l
}

INITIAL {
    rates(v)
    n=ninf
    l=linf
}

ASSIGNED {
	ik (mA/cm2)
    ninf
    linf      
    taul
    taun
    gka
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gka = gkabar*n*l
	ik = gka*(v-ek)
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states { 
        rates(v)
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,q10
        q10=3^((celsius-30)/10)
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(q10*a0n*(1+a))
        a = alpl(v)
        linf = 1/(1+ a)
        taul = betl(v)/(q10*a0l*(1 + a))
}


Loading data, please wait...