Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:249463
Study on how GWAS-identified risk genes of shizophrenia affect excitability and integration of inputs in thick-tufted layer V pyramidal cells
Reference:
1 . Mäki-Marttunen T, Devor A, Phillips WA, Dale AM, Andreassen OA, Einevoll GT (2019) Computational modeling of genetic contributions to excitability and neural coding in layer V pyramidal cells: applications to schizophrenia pathology Front. Comput. Neurosci. 13:66
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s): I A; I M; I h; I K,Ca; I Calcium; I A, slow; I Na,t; I Na,p; I L high threshold; I T low threshold;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON; Python;
Model Concept(s): Schizophrenia; Dendritic Action Potentials; Action Potential Initiation; Synaptic Integration;
Implementer(s): Maki-Marttunen, Tuomo [tuomo.maki-marttunen at tut.fi];
Search NeuronDB for information about:  AMPA; NMDA; Gaba; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow; Gaba; Glutamate;
/
l5pc_scz
hay
models
morphologies
README.html
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
ProbAMPANMDA2.mod *
ProbUDFsyn2.mod *
SK_E2.mod *
SKv3_1.mod *
calcapicalthresholds_control.py
calcapicalthresholds_epsp_control.py
calcifcurves.py
calcifcurves_comb.py
calcnspikesperburst2.py
calcsteadystate.py
calcupdown2responses.py
calcupdownresponses_noisydown.py
calcupdownresponses_noisyup.py
coding.py
coding_comb.py
coding_nonprop_comb_somaticI.py
coding_nonprop_somaticI.py
collectupdownresponses_noisy.py
control_cs.sav
controlamps_cs0.sav
controlamps_cs1.sav
controlamps_cs2.sav
controlamps_cs3.sav
controlamps_cs4.sav
controlamps_cs5.sav
controlamps_cs6.sav
drawfigcomb.py
drawnspikesperburst2.py
drawupdownresponses_noisy.py
findppicoeffs.py
findppicoeffs_comb.py
findppicoeffs_complement.py
findthresholdbasalamps_coding.py
findthresholddistalamps.py
findthresholddistalamps_coding.py
findthresholddistalamps_comb.py
mutation_stuff.py
mytools.py
protocol.py
runcontrols_cs.py
savebasalsynapselocations_coding.py
savesynapselocations.py
savesynapselocations_coding.py
scalemutations_cs.py
scalings_cs.sav
setparams.py
synlocs300.0.sav
                            
(lp0
(lp1
(lp2
(lp3
F0.0
aF3.0
aF1.5
aF0.75
aF1.125
aF1.3125
aF1.40625
aF1.359375
aF1.3359375
aF1.32421875
aF1.318359375
aF1.3212890625
aF1.31982421875
aF1.31909179688
aF1.31872558594
aF1.31854248047
aF1.31845092773
aF1.31840515137
aF1.31842803955
aF1.31843948364
aF1.3184337616
aF1.31843662262
aF1.31843805313
aF1.31843733788
aF1.3184376955
aF1.31843787432
aF1.31843778491
aF1.31843774021
aF1.31843776256
aF1.31843775138
aaa(lp4
(lp5
F0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aaa(lp6
(lp7
F0.0
aF3.0
aF1.5
aF0.75
aF1.125
aF0.9375
aF0.84375
aF0.796875
aF0.8203125
aF0.83203125
aF0.826171875
aF0.8291015625
aF0.82763671875
aF0.828369140625
aF0.828735351562
aF0.828918457031
aF0.829010009766
aF0.829055786133
aF0.829032897949
aF0.829044342041
aF0.829038619995
aF0.829041481018
aF0.829040050507
aF0.829040765762
aF0.82904112339
aF0.829040944576
aF0.829040855169
aF0.829040899873
aF0.829040922225
aF0.829040911049
aaaa(lp8
(lp9
(lp10
F0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aF0.0
aaa(lp11
(lp12
F0.0
aF2.0
aF1.0
aF0.5
aF0.25
aF0.125
aF0.0625
aF0.03125
aF0.046875
aF0.0390625
aF0.03515625
aF0.033203125
aF0.0341796875
aF0.03466796875
aF0.034423828125
aF0.0345458984375
aF0.0346069335938
aF0.0345764160156
aF0.0345916748047
aF0.0345840454102
aF0.0345802307129
aF0.0345821380615
aF0.0345830917358
aF0.034583568573
aF0.0345838069916
aF0.0345836877823
aF0.0345836281776
aF0.03458365798
aF0.0345836430788
aF0.0345836505294
aaa(lp13
(lp14
F0.0
aF0.0786923310287
aF0.0393461655144
aF0.0196730827572
aF0.0295096241358
aF0.0245913534465
aF0.0221322181018
aF0.0209026504295
aF0.0215174342657
aF0.0218248261837
aF0.0216711302247
aF0.0217479782042
aF0.0217095542145
aF0.0217287662093
aF0.0217383722068
aF0.0217431752055
aF0.0217455767049
aF0.0217467774545
aF0.0217461770797
aF0.0217464772671
aF0.0217463271734
aF0.0217464022203
aF0.0217463646968
aF0.0217463834586
aF0.0217463928394
aF0.021746388149
aF0.0217463858038
aF0.0217463869764
aF0.0217463875627
aF0.0217463872695
aaaa(lp15
(lp16
F1.3184377569705248
aa(lp17
F0.05187547020614147
aa(lp18
F0.8290409054607153
aaaF0.039346165514358225
a.

Loading data, please wait...