ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/2937.

CA1 Pyramidal Neuron: slow Na+ inactivation (Migliore 1996)

 Download zip file 
Help downloading and running models
Accession:2937
Model files from the paper: M. Migliore, Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons, Biophys. J. 71:2394-403 (1996). Please see the below readme file for installation and use instructions. Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
Reference:
1 . Migliore M (1996) Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons. Biophys J 71:2394-403 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I K; I M; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,t; I K; I M; I h;
TITLE Q current 

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
        (mM) = (milli/liter)

}

PARAMETER {
        dt (ms)
	v (mV)
	erevq=-55   (mV)
	celsius 	(degC)
	gqbar=.003 (mho/cm2)
        vhalf=-93   (mV)
        a0=0.0009      (/ms)
        zeta=5    (1)
        gq=0.4   (1)
}


NEURON {
	SUFFIX q
	NONSPECIFIC_CURRENT Iq
        RANGE Iq,gqbar
        GLOBAL inf,tau
}

STATE {
        q
}

ASSIGNED {
	Iq (mA/cm2)
        inf
        tau
}

INITIAL {
        rate(v)
        q=inf

}

BREAKPOINT {
	SOLVE state METHOD cnexp
	Iq = gqbar*q*(v-erevq)

}

FUNCTION alp(v(mV)) {
  alp = exp( 1.e-3*zeta*(v-vhalf)*9.648e4/(8.315*(273.16+celsius)))
}

FUNCTION bet(v(mV)) {
  bet = exp(1.e-3*zeta*gq*(v-vhalf)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE state { 
        rate(v)
        q' = (inf - q)/tau
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,q10
        q10=5^((celsius-23)/10)
        a = alp(v)
        inf = 1/(1 + a)
        tau = bet(v)/(q10*a0*(1+a))
}

Loading data, please wait...