Auditory nerve model for predicting performance limits (Heinz et al 2001)

 Download zip file 
Help downloading and running models
Accession:36834
A computational auditory nerve (AN) model was developed for use in modeling psychophysical experiments with normal and impaired human listeners. In this phenomenological model, many physiologically vulnerable response properties associated with the cochlear amplifier are represented by a single nonlinear control mechanism, see paper for details. Several model versions are described that can be used to evaluate the relative effects of these nonlinear properties.
Reference:
1 . Heinz MG, Zhang X, Bruce IC, Carney LH (2001) Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoustics Research Letters Online 2(3):91-96
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Auditory nerve;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program; MATLAB;
Model Concept(s): Activity Patterns; Temporal Pattern Generation; Audition;
Implementer(s): Zhang, Xuedong ;
#ifndef _COMPLEX_H
#define _COMPLEX_H

/* COMPLEX.H header file		
 * use for complex arithmetic in C 
 (part of them are from "C Tools for Scientists and Engineers" by L. Baker)
*/
extern double cos(double);
extern double sin(double);
struct __COMPLEX{ double x,y; };
typedef struct __COMPLEX COMPLEX;

/* for below, X, Y are complex structures, and one is returned */

/*//real part of the complex multiplication */
#define CMULTR(X,Y) ((X).x*(Y).x-(X).y*(Y).y)
/*//image part of the complex multiplication */
#define CMULTI(X,Y) ((X).y*(Y).x+(X).x*(Y).y)
/*// used in the Division : real part of the division */
#define CDRN(X,Y) ((X).x*(Y).x+(Y).y*(X).y)
/*// used in the Division : image part of the division */
#define CDIN(X,Y) ((X).y*(Y).x-(X).x*(Y).y)
/*// used in the Division : denumerator of the division */
#define CNORM(X) ((X).x*(X).x+(X).y*(X).y)
/*//real part of the complex */
#define CREAL(X) ((double)((X).x))
/*//conjunction value */
#define CONJG(z,X) {(z).x=(X).x;(z).y= -(X).y;}
/*//conjunction value */
#define CONJ(X) {(X).y= -(X).y;}
/*//muliply : z could not be same variable as X or Y, same rule for other Macro */
#define CMULT(z,X,Y) {(z).x=CMULTR((X),(Y));(z).y=CMULTI((X),(Y));}
/*//division */
#define CDIV(z,X,Y){double d=CNORM(Y); (z).x=CDRN(X,Y)/d; (z).y=CDIN(X,Y)/d;}
/*//addition */
#define CADD(z,X,Y) {(z).x=(X).x+(Y).x;(z).y=(X).y+(Y).y;}
/*//subtraction */
#define CSUB(z,X,Y) {(z).x=(X).x-(Y).x;(z).y=(X).y-(Y).y;}
/*//assign */
#define CLET(to,from) {(to).x=(from).x;(to).y=(from).y;}
/*//abstract value(magnitude) */
#define cabs(X) sqrt((X).y*(X).y+(X).x*(X).x)
/*//real to complex */
#define CMPLX(X,real,imag) {(X).x=(real);(X).y=(imag);}
/*//multiply with real */
#define CTREAL(z,X,real) {(z).x=(X).x*(real);(z).y=(X).y*(real);}

#define CEXP(z,phase) {(z).x = cos(phase); (z).y = sin(phase); }
/* implementation using function : for compatibility */
COMPLEX compdiv(COMPLEX ne,COMPLEX de);
COMPLEX compexp(double theta);
COMPLEX compmult(double scalar,COMPLEX compnum);
COMPLEX compprod(COMPLEX compnum1, COMPLEX compnum2);
COMPLEX comp2sum(COMPLEX summand1, COMPLEX summand2);
COMPLEX comp3sum(COMPLEX summand1, COMPLEX summand2, COMPLEX summand3);
COMPLEX compsubtract(COMPLEX complexA, COMPLEX complexB);
double  REAL(COMPLEX compnum);

#endif

Loading data, please wait...