Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:50210
The model supports the experimental findings on the effects of postnatal odor deprivation, and shows that a -10mV shift in the Na activation or a reduction in the dendritic length of newborn GC could independently explain the observed increase in excitability.
Reference:
1 . Saghatelyan A, Roux P, Migliore M, Rochefort C, Desmaisons D, Charneau P, Shepherd GM, Lledo PM (2005) Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron 46:103-16 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Ion Channel Kinetics; Active Dendrites; Influence of Dendritic Geometry; Action Potentials; Olfaction;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell; AMPA; NMDA; I Na,t; I A; I K; Gaba; Glutamate;
/
saghatelyan
readme.txt
kamt.mod *
kdrmt.mod *
naxn.mod *
nmdanet.mod
gc-occ.hoc
mitral-occ.hoc
modeldb.zip
mosinit.hoc
occlusion.hoc
                            
TITLE K-A
: K-A current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002

NEURON {
	SUFFIX kamt
	USEION k READ ek WRITE ik
	RANGE  gbar
	GLOBAL minf, mtau, hinf, htau
}

PARAMETER {
	gbar = 0.002   	(mho/cm2)	
								
	celsius
	ek		(mV)            : must be explicitly def. in hoc
	v 		(mV)
	a0m=0.04
	vhalfm=-45
	zetam=0.1
	gmm=0.75

	a0h=0.018
	vhalfh=-70
	zetah=0.2
	gmh=0.99

	sha=9.9
	shi=5.7
	
	q10=3
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ik 		(mA/cm2)
	minf 		mtau (ms)	 	
	hinf 		htau (ms)	 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
	ik = gbar*m*h*(v - ek)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf  
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(v) {  
	LOCAL qt
        qt=q10^((celsius-24)/10)
        minf = 1/(1 + exp(-(v-sha-7.6)/14))
	mtau = betm(v)/(qt*a0m*(1+alpm(v)))

        hinf = 1/(1 + exp((v-shi+47.4)/6))
	htau = beth(v)/(qt*a0h*(1+alph(v)))
}

FUNCTION alpm(v(mV)) {
  alpm = exp(zetam*(v-vhalfm)) 
}

FUNCTION betm(v(mV)) {
  betm = exp(zetam*gmm*(v-vhalfm)) 
}

FUNCTION alph(v(mV)) {
  alph = exp(zetah*(v-vhalfh)) 
}

FUNCTION beth(v(mV)) {
  beth = exp(zetah*gmh*(v-vhalfh)) 
}

Loading data, please wait...