LTP in cerebellar mossy fiber-granule cell synapses (Saftenku 2002)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:51196
We simulated synaptic transmission and modified a simple model of long-term potentiation (LTP) and long-term depression (LTD) in order to describe long-term plasticity related changes in cerebellar mossy fiber-granule cell synapses. In our model, protein autophosphorylation, leading to the maintenance of long-term plasticity, is controlled by Ca2+ entry through the NMDA receptor channels. The observed nonlinearity in the development of long-term changes of EPSP in granule cells is explained by the difference in the rate constants of two independent autocatalytic processes.
Reference:
1 . Saftenku EE (2002) A simplified model of long-term plasticity in cerebellar mossy fiber-granule cell synapses. Neurophysiology/Neirofiziologiya 34:216-218
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Long-term Synaptic Plasticity; Maintenance;
Implementer(s): Saftenku, Elena [esaft at biph.kiev.ua];
Search NeuronDB for information about:  AMPA; NMDA;
TITLE Cerebellum Granule Cell Model, KM channel

COMMENT
Reference: E.D'Angelo, T.Nieus, A. Maffei, S. Armano, P. Rossi,
V. Taglietti, A. Fontana, G. Naldi "Theta-frequency bursting and 
resonance in cerebellar granule cells: experimental evidence and 
modeling of a slow K+-dependent mechanism", J. neurosci., 2001,
21,P. 759-770.
ENDCOMMENT
 
NEURON { 
	SUFFIX GrG_KM 
	USEION k READ ek WRITE ik 
	RANGE gkbar, ik, g, alpha_n, beta_n 
	RANGE Aalpha_n, Kalpha_n, V0alpha_n
	RANGE Abeta_n, Kbeta_n, V0beta_n
	RANGE V0_ninf, B_ninf
	RANGE n_inf, tau_n 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	Aalpha_n = 0.0033 (/ms)
	Kalpha_n = 40 (mV)
      V0alpha_n = -30 (mV)
	Abeta_n = 0.0033 (/ms)
	Kbeta_n = -20 (mV)
	V0beta_n = -30 (mV)
	V0_ninf = -30 (mV)
	B_ninf = 6 (mV)
	gkbar= 0.00035 (mho/cm2) 
	 
} 

STATE { 
	n 
} 

ASSIGNED { 
	ik (mA/cm2) 
	n_inf 
	tau_n (ms) 
	g (mho/cm2) 
	alpha_n (/ms) 
	beta_n (/ms) 
      ek (mV)
      celsius (degC) 
      v (mV) 
} 

 
INITIAL { 
	rate(v) 
	n = n_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gkbar*n 
	ik = g*(v - ek) 
	alpha_n = alp_n(v) 
	beta_n = bet_n(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	n' =(n_inf - n)/tau_n 
} 
 
FUNCTION alp_n(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-22(degC))/10(degC)) 
if((v-V0alpha_n)/Kalpha_n>200){
alp_n = Q10*Aalpha_n*exp(200)
}else{
	alp_n = Q10*Aalpha_n*exp((v-V0alpha_n)/Kalpha_n) 
} 
} 
FUNCTION bet_n(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-22(degC))/10(degC)) 
if((v-V0beta_n)/Kbeta_n>200){
bet_n = Q10*Abeta_n*exp(200)
}else{
	bet_n = Q10*Abeta_n*exp((v-V0beta_n)/Kbeta_n) 
} 
 }
PROCEDURE rate(v (mV)) {LOCAL a_n, b_n 
	TABLE n_inf, tau_n 
	DEPEND Aalpha_n, Kalpha_n, V0alpha_n, 
	       Abeta_n, Kbeta_n, V0beta_n, V0_ninf, B_ninf, celsius FROM -100 TO 100 WITH 200 
	a_n = alp_n(v)  
	b_n = bet_n(v) 
	tau_n = 1/(a_n + b_n) 
if((-(v-V0_ninf)/B_ninf)>200){
 n_inf = 1/(1+exp(200))
}else{
	n_inf = 1/(1+exp(-(v-V0_ninf)/B_ninf))
} 
}

Loading data, please wait...