LTP in cerebellar mossy fiber-granule cell synapses (Saftenku 2002)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:51196
We simulated synaptic transmission and modified a simple model of long-term potentiation (LTP) and long-term depression (LTD) in order to describe long-term plasticity related changes in cerebellar mossy fiber-granule cell synapses. In our model, protein autophosphorylation, leading to the maintenance of long-term plasticity, is controlled by Ca2+ entry through the NMDA receptor channels. The observed nonlinearity in the development of long-term changes of EPSP in granule cells is explained by the difference in the rate constants of two independent autocatalytic processes.
Reference:
1 . Saftenku EE (2002) A simplified model of long-term plasticity in cerebellar mossy fiber-granule cell synapses. Neurophysiology/Neirofiziologiya 34:216-218
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Long-term Synaptic Plasticity; Maintenance;
Implementer(s): Saftenku, Elena [esaft at biph.kiev.ua];
Search NeuronDB for information about:  AMPA; NMDA;
objectvar save_window_, rvp_
objectvar scene_vector_[8]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}

{
xpanel("RunControl", 0)
v_init = -80
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 0
xvalue("t","t", 2 )
tstop = 420100
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.005
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 1
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
xcheckbox("Quiet",&stdrun_quiet,"")
realtime = 0
xvalue("Real Time","realtime", 0,"", 0, 1 )
xpanel(0,144)
}
{
save_window_ = new Graph(0)
save_window_.size(0,420100,-80,40)
scene_vector_[5] = save_window_
{save_window_.view(0, -80, 420100, 120, 186, 300, 280.8, 165.7)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addvar("GrCell[0].soma.v( 0.5 )", 1, 1, 0.36869, 0.967092, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,420100,0,0.035)
scene_vector_[6] = save_window_
{save_window_.view(0, 0, 420100, 0.035, 350, 303, 332.1, 159.4)}
graphList[1].append(save_window_)
save_window_.save_name("graphList[1].")
save_window_.addvar("GrCell[0].ltp1[0].messenger", 1, 1, 0.547604, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,420100,0,2.6)
scene_vector_[7] = save_window_
{save_window_.view(0, 0, 420100, 2.6, 369, 1, 285.3, 185.5)}
graphList[3].append(save_window_)
save_window_.save_name("graphList[3].")
save_window_.addvar("GrCell[0].ltp1[0].Np", 2, 1, 0.595527, 0.9, 2)
save_window_.addvar("GrCell[0].ltp1[0].Nd", 1, 1, 0.595527, 0.9, 2)
}

//Begin VariableTimeStep
{
ocbox_ = NumericalMethodPanel[0]
ocbox_ = ocbox_.b1
ocbox_.map("VariableTimeStep", 1, 72, 216.9, 70.3)
}

objectvar scene_vector_[1]
{doNotify()}



Loading data, please wait...