LTP in cerebellar mossy fiber-granule cell synapses (Saftenku 2002)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:51196
We simulated synaptic transmission and modified a simple model of long-term potentiation (LTP) and long-term depression (LTD) in order to describe long-term plasticity related changes in cerebellar mossy fiber-granule cell synapses. In our model, protein autophosphorylation, leading to the maintenance of long-term plasticity, is controlled by Ca2+ entry through the NMDA receptor channels. The observed nonlinearity in the development of long-term changes of EPSP in granule cells is explained by the difference in the rate constants of two independent autocatalytic processes.
Reference:
1 . Saftenku EE (2002) A simplified model of long-term plasticity in cerebellar mossy fiber-granule cell synapses. Neurophysiology/Neirofiziologiya 34:216-218
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Simplified Models; Long-term Synaptic Plasticity; Maintenance;
Implementer(s): Saftenku, Elena [esaft at biph.kiev.ua];
Search NeuronDB for information about:  AMPA; NMDA;
objref grafs[4]
ngraph = 0
objref mfpanel
proc addgraph() { local ii	
      ngraph = ngraph+1
	ii = ngraph-1
	grafs[ii] = new Graph(0)
      grafs[ii].size(0,tstop,$2,$3)
	grafs[ii].view(0,0,4000,48,0,48,150,48)
	grafs[ii].addvar($s1,1,0)
	grafs[ii].save_name("graphList[0].")
      graphList[0].append(grafs[ii])
      grafs[ii].exec_menu("View=plot")
      grafs[ii].flush()
}
proc UpDateMossy(){
	for(i=0;i<=3;i=i+1) {
            Mossy[i].pp.fast_freq=InSpike
            Mossy[i].pp.slow_freq=InBurst
            Mossy[i].pp.startbursting=StartIn
            Mossy[i].pp.endbursting=EndIn 
		Mossy[i].pp.noise=Noise
            if (i<=NumSyn-1) {
		Mossy[i].pp.t01=t01
            Mossy[i].pp.t02=t02
            Mossy[i].pp.APinburst=Spikes 
             		} else {
			Mossy[i].pp.t01= -1
                  Mossy[i].pp.t02= -1
               Mossy[i].pp.APinburst=0   
}
}
}

mfpanel = new VBox()
mfpanel.intercept(1)

t01= Mossy[0].pp.t01
t02= Mossy[0].pp.t02
InSpike= Mossy[0].pp.fast_freq 
InBurst= Mossy[0].pp.slow_freq 
Spikes= Mossy[0].pp.APinburst 
StartIn= Mossy[0].pp.startbursting 
EndIn= Mossy[0].pp.endbursting 
Noise= Mossy[0].pp.noise 
NumSyn=2
 UpDateMossy() 

xpanel("Mossy Traces")   
addgraph("Mossy[0].pp.y",0,2)
addgraph("Mossy[1].pp.y",0,2)
addgraph("Mossy[2].pp.y",0,2)
addgraph("Mossy[3].pp.y",0,2)
xpanel()  
xpanel("2")
xvalue("The first spike","t01",1,"UpDateMossy()", 0, 0 )
xvalue("The last spike","t02",1,"UpDateMossy()", 0, 0 )
xvalue("Number of synapses ","NumSyn", 1,"UpDateMossy()", 0, 0 )
xvalue("Interspike frequency (Hz)","InSpike", 1,"UpDateMossy()", 0, 0 )
xvalue("Interburst frequency (Hz)","InBurst", 1,"UpDateMossy()", 0, 0 )
xvalue("Spikes per burst","Spikes", 1,"UpDateMossy()", 0, 0 )
xvalue("Begin of the Input (ms)","StartIn", 1,"UpDateMossy()", 0, 0 )
xvalue("End of the Input (ms)","EndIn", 1,"UpDateMossy()", 0, 0 )
xvalue("Poisson Noise (0=Not)","Noise", 1,"UpDateMossy()", 0, 0 )
xpanel()
mfpanel.intercept(0)
mfpanel.map("Mossy Fibers")




Loading data, please wait...