Cortical network model of posttraumatic epileptogenesis (Bush et al 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:52034
This simulation from Bush, Prince, and Miller 1999 shows the epileptiform response (Fig. 6C) to a brief single stimulation in a 500 cell network of multicompartment models, some of which have active dendrites. The results which I obtained under Redhat Linux is shown in result.gif. Original 1997 code from Paul Bush modified slightly by Bill Lytton to make it work with current version of NEURON (5.7.139). Thanks to Paul Bush and Ken Miller for making the code available.
Reference:
1 . Bush PC, Prince DA, Miller KD (1999) Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model. J Neurophysiol 82:1748-58 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex M1 L5B pyramidal pyramidal tract GLU cell; Neocortex M1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex M1 interneuron basket PV GABA cell;
Channel(s): I Na,t; I Sodium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models; Epilepsy; Synaptic Integration;
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Bush, Paul;
Search NeuronDB for information about:  Neocortex M1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex M1 L5B pyramidal pyramidal tract GLU cell; Neocortex M1 interneuron basket PV GABA cell; GabaA; GabaB; AMPA; NMDA; Gaba; I Na,t; I Sodium; I Potassium; Gaba; Glutamate;
 
/
ctxnet
                            
File not selected

<- Select file from this column.
Loading data, please wait...