Coding of stimulus frequency by latency in thalamic networks (Golomb et al 2005)

 Download zip file 
Help downloading and running models
Accession:58582
The paper presents models of the rat vibrissa processing system including the posterior medial (POm) thalamus, ventroposterior medial (VPm) thalamus, and GABAB- mediated feedback inhibition from the reticular thalamic (Rt) nucleus. A clear match between the experimentally measured spike-rates and the numerically calculated rates for the full model occurs when VPm thalamus receives stronger brainstem input and weaker GABAB-mediated inhibition than POm thalamus.
Reference:
1 . Golomb D, Ahissar E, Kleinfeld D (2006) Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape. J Neurophysiol 95:1735-50 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: C or C++ program;
Model Concept(s): Simplified Models; Rate-coding model neurons;
Implementer(s): Golomb, David [golomb at bgu.ac.il];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; GabaA; GabaB; AMPA; Gaba; Glutamate;
scan=u
INPUT ff 2.0 5.0 8.0 11.0
INPUT pstim=p rstim=r nnts=1 PLtshift=7.0
nts=1 ts=2400.0 ff=5.0 alphap=0.6
LT: ntstim=4 tstim=6.0 11.0 56.0 96.0 
                Ix=0.0 0.8  1.5  0.0
CELLULAR
admodel=4 sigmaa=0.001
LT: gL=0.05 VL=-60.0 VK=-90.0 Vthr=-50.0 taut=1.0 fgb=0.2 fst=20.0 
    thetaa=1.0 sadapt=0.5 tau_act_del=10.0
    tauact=10.0 taudeact=100.0 rauact=20.0 raudeact=10.0
PT: gL=0.05 VL=-60.0 VK=-90.0 Vthr=-50.0 taut=1.0 fgb=0.2 fst=20.0
    thetaa=0.5 sadapt=1.0 tau_act_del=20.0
    tauact=3.0 taudeact=100.0 rauact=20.0 raudeact=30.0
R: taut=1.0
KINETICS
AMPA: tau2=2.0
NMDA: tau2=50.0
GABAA: tau2=10.0 
GABAB: tau1=40.0 tau2=150.0 power=2.0
SYNAPTIC STRENGTHS AND DELAYS
LT: theta=0.0 (g,td) lep=0.0 10.0 ra=-0.5 3.0 rb=-2.0 35.0
LE: theta=0.0 (g,td) ltp=1.2 0.0 lia=-0.4 0.0
LI: theta=0.0 (g,td) ltp=0.2 0.0 lep=0.1 0.0 
PT: theta=0.0 (g,td) pep=0.0 0.0 ra=-0.16 3.0 rb=-3.5 35.0
PE: theta=0.0 (g,td) ptp=1.2 0.0 pia=-0.4 0.0
PI: theta=0.0 (g,td) ptp=0.2 0.0 pep=0.1 0.0 
R:  theta=0.0 (g,td) ltp=1.2 0.0 lep=0.0 0.0 ptp=1.0 0.0
GENERAL
deltat=0.02 nt=120000
twrite=20 tmcol=120000
method=e smforce=p
nwritev=10 nwritevar=1 3 4 7 9 10 14 16 2 8 nwritep=3 nwritepar=1 4 7


      1    2    3    4    5    6    7    8    9    10   11   12  
var: iltv ilta ilti iltp ilep ilia iptv ipta ipti iptp ipep ipia 
     13   14   15   16
     iri  ira  jrb  irb
      1   2   3   4   5   6  7
pop: MLT MLE MLI MPT MPE MPI MR


scan      : n - no, e - equal spacing, u - unequal spacing, t - two parameters,
            c - contour lines.
pstim     : i - independent POm stimulus, p - proportional to VPM stimulus.
rstim     : r - read stimulus, c - calculate stimulus.
method    : R - Runge-Kutta 4, e - Euler.
smforce   : p - always print (sm=0), n - always no print (sm=1), 
            l - leave as is.
INPUT ff parmin=2.0 parmax=11.0 npar=3   (scan=e)
PT: ntstim=3 tstim=5.0 50.0 90.0
                Ix=0.5 0.9   0.0

scan=e
INPUT ff parmin=1.0 parmax=11.0 npar=20
INPUT ff 2.0 5.0 8.0 11.0

Loading data, please wait...