Dendritica (Vetter et al 2001)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:7907
Dendritica is a collection of programs for relating dendritic geometry and signal propagation. The programs are based on those used for the simulations described in: Vetter, P., Roth, A. & Hausser, M. (2001) For reprint requests and additional information please contact Dr. M. Hausser, email address: m.hausser@ucl.ac.uk
Reference:
1 . Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926-37 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Cerebellum Purkinje GABA cell;
Channel(s): I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Bursting; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Axonal Action Potentials; Action Potentials;
Implementer(s): Hausser, M [M.Hausser at ucl.ac.uk];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Cerebellum Purkinje GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Files displayed below are from the implementation
/
dendritica-1.1
batch_back
back
mod
kvz_naz
SGI
ca.mod *
cad.mod *
childa.mod *
iqq.mod *
kadist.mod
kaprox.mod
kca.mod *
km.mod *
kvz_nature.mod *
naz_nature.mod *
peak.mod
syn2.mod *
mod_func.c
special_kvznaz *
                            
TITLE decay of internal calcium concentration
:
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
:
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
:
: Units checked using "modlunit" -> factor 10000 needed in ca entry
:
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
:
: All variables are range variables
:
:
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
:
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX cad
	USEION ca READ ica, cai WRITE cai
	RANGE ca
	GLOBAL depth,cainf,taur
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
	FARADAY = (faraday) (coulomb)
}


PARAMETER {
	depth	= .1	(um)		: depth of shell
	taur	= 200	(ms)		: rate of calcium removal
	cainf	= 100e-6(mM)
	cai		(mM)
}

STATE {
	ca		(mM) 
}

INITIAL {
	ca = cainf
}

ASSIGNED {
	ica		(mA/cm2)
	drive_channel	(mM/ms)
}
	
BREAKPOINT {
	SOLVE state METHOD euler
}

DERIVATIVE state { 

	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)
	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	ca' = drive_channel + (cainf-ca)/taur
	cai = ca
}








Loading data, please wait...