Dendritica (Vetter et al 2001)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:7907
Dendritica is a collection of programs for relating dendritic geometry and signal propagation. The programs are based on those used for the simulations described in: Vetter, P., Roth, A. & Hausser, M. (2001) For reprint requests and additional information please contact Dr. M. Hausser, email address: m.hausser@ucl.ac.uk
Reference:
1 . Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926-37 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Cerebellum Purkinje GABA cell;
Channel(s): I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Bursting; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Axonal Action Potentials; Action Potentials;
Implementer(s): Hausser, M [M.Hausser at ucl.ac.uk];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Cerebellum Purkinje GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Files displayed below are from the implementation
/
dendritica-1.1
batch_back
back
mod
kvz_naz
SGI
ca.mod *
cad.mod *
childa.mod *
iqq.mod *
kadist.mod
kaprox.mod
kca.mod *
km.mod *
kvz_nature.mod *
naz_nature.mod *
peak.mod
syn2.mod *
mod_func.c
special_kvznaz *
                            
COMMENT

kca.mod

Calcium-dependent potassium channel
Based on
Pennefather (1990) -- sympathetic ganglion cells
taken from
Reuveni et al (1993) -- neocortical cells

Author: Zach Mainen, Salk Institute, 1995, zach@salk.edu
	
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX kca
	USEION k READ ek WRITE ik
	USEION ca READ cai
	RANGE n, gk, gbar
	RANGE ninf, ntau
	GLOBAL Ra, Rb, caix
	GLOBAL q10, temp, tadj, vmin, vmax
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

PARAMETER {
	gbar = 10   	(pS/um2)	: 0.03 mho/cm2
	v 		(mV)
	cai  		(mM)
	caix = 1	
									
	Ra   = 0.01	(/ms)		: max act rate  
	Rb   = 0.02	(/ms)		: max deact rate 

	dt		(ms)
	celsius		(degC)
	temp = 23	(degC)		: original temp 	
	q10  = 2.3			: temperature sensitivity

	vmin = -120	(mV)
	vmax = 100	(mV)
} 


ASSIGNED {
	a		(/ms)
	b		(/ms)
	ik 		(mA/cm2)
	gk		(pS/um2)
	ek		(mV)
	ninf
	ntau 		(ms)	
	tadj
}
 

STATE { n }

INITIAL { 
	rates(cai)
	n = ninf
}

BREAKPOINT {
        SOLVE states
	gk = tadj*gbar*n
	ik = (1e-4) * gk * (v - ek)
} 

LOCAL nexp

PROCEDURE states() {   :Computes state variable n 
        rates(cai)      :             at the current v and dt.
        n = n + nexp*(ninf-n)

        VERBATIM
        return 0;
        ENDVERBATIM
}



FUNCTION myexp(x) {
	if (x < -100) {
	myexp = 0
	}else{
	myexp = exp(x)
	}
}




PROCEDURE rates(cai(mM)) {  

        LOCAL tinc

        a = Ra * cai^caix
        b = Rb
        ntau = 1/(a+b)
	ninf = a*ntau

        tadj = q10^((celsius - temp)/10)

        tinc = -dt * tadj
        nexp = 1 - myexp(tinc/ntau)
}












Loading data, please wait...