ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/8115.

Fluctuating synaptic conductances recreate in-vivo-like activity (Destexhe et al 2001)

 Download zip file 
Help downloading and running models
Accession:8115
This model (and experiments) reported in Destexhe, Rudolh, Fellous, and Sejnowski (2001) support the hypothesis that many of the characteristics of cortical neurons in vivo can be explained by fast glutamatergic and GABAergic conductances varying stochastically. Some of these cortical neuron characteristics of fluctuating synaptic origin are a depolarized membrane potential, the presence of high-amplitude membrane potential fluctuations, a low input resistance and irregular spontaneous firing activity. In addition, the point-conductance model could simulate the enhancement of responsiveness due to background activity. For more information please contact Alain Destexhe. email: Destexhe@iaf.cnrs-gif.fr
Reference:
1 . Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,t; I K; I M;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Simplified Models; Synaptic noise;
Implementer(s): Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; GabaA; AMPA; I Na,t; I K; I M;
TITLE Sodium channels

COMMENT
-----------------------------------------------------------------------------
	Na current for action potentials
	--------------------------------

  - fast sodium current
  - iterative equations

  Model of INa for hippocampal pyramidal cells, from
  Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991

  Added a shift parameter for inactivation only
  Added instantaneous conductance

  Written by Alain Destexhe, Laval University, 1996
-----------------------------------------------------------------------------
ENDCOMMENT


INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX inaT
	USEION na READ ena WRITE ina
	RANGE gnabar, g, vtraub, shift
	RANGE m_inf, h_inf
	RANGE tau_m, tau_h
	RANGE m_exp, h_exp
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gnabar	= .003 	(mho/cm2)	: max conductance
	vtraub	= -65	(mV)		: adjusts threshold
	shift	= 0	(mV)		: inactivation shift
	ena	= 50	(mV)
	celsius = 36    (degC)
	dt              (ms)
	v               (mV)
}

STATE {
	m h
}

ASSIGNED {
	ina	(mA/cm2)
	m_inf
	h_inf
	tau_m	(ms)
	tau_h	(ms)
	m_exp
	h_exp
	tadj
	g	(mho/cm2)	: instantaneous conductance
}


BREAKPOINT {
	SOLVE states
	g = gnabar * m*m*m*h
	ina = g * (v - ena)
}


:DERIVATIVE states {
:	evaluate_fct(v)
:	m' = (m_inf - m) / tau_m
:	h' = (h_inf - h) / tau_h
:}

PROCEDURE states() {	: exact when v held constant
	evaluate_fct(v)
	m = m + m_exp * (m_inf - m)
	h = h + h_exp * (h_inf - h)
}

UNITSOFF
INITIAL {
	m = 0
	h = 0
:
:  Q10 was assumed to be 2.3 for both currents
:
:  original measurements at room temperature

	tadj = 2.3 ^ ((celsius-23)/ 10 )
	evaluate_fct(v)
	m = m_inf
	h = h_inf
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	v2 = v - vtraub 	: convert to traub convention

	a = 0.32 * (13-v2) / ( exp((13-v2)/4) - 1)
	b = 0.28 * (v2-40) / ( exp((v2-40)/5) - 1)
	tau_m = 1 / (a + b)
	m_inf = a / (a + b)

	v2 = v2 - shift		: inactivation shift

	a = 0.128 * exp((17-v2)/18)
	b = 4 / ( 1 + exp((40-v2)/5) )
	tau_h = 1 / (a + b)
	h_inf = a / (a + b)

	m_exp = 1 - exp(-dt/tau_m)
	h_exp = 1 - exp(-dt/tau_h)
}

UNITSON

Loading data, please wait...