Irregular spiking in NMDA-driven prefrontal cortex neurons (Durstewitz and Gabriel 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:82784
Slow N-Methyl-D-aspartic acid (NMDA) synaptic currents are assumed to strongly contribute to the persistently elevated firing rates observed in prefrontal cortex (PFC) during working memory. During persistent activity, spiking of many neurons is highly irregular. ... The highest interspike-interval (ISI) variability occurred in a transition regime where the subthreshold membrane potential distribution shifts from mono- to bimodality, ... Predictability within irregular ISI series was significantly higher than expected from a noise-driven linear process, indicating that it might best be described through complex (potentially chaotic) nonlinear deterministic processes. Accordingly, the phenomena observed in vitro could be reproduced in purely deterministic biophysical model neurons. High spiking irregularity in these models emerged within a chaotic, close-to-bifurcation regime characterized by a shift of the membrane potential distribution from mono- to bimodality and by similar ISI return maps as observed in vitro. ... NMDA-induced irregular dynamics may have important implications for computational processes during working memory and neural coding.
Reference:
1 . Durstewitz D, Gabriel T (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb Cortex 17:894-908 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex; Prefrontal cortex (PFC);
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I K; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Activity Patterns; Working memory; Calcium dynamics; Bifurcation;
Implementer(s): Durstewitz, Daniel [daniel.durstewitz at plymouth.ac.uk];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I K; I Potassium;
objectvar save_window_, rvp_
objectvar scene_vector_[3]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}

//Begin VecWrap[0]
{
load_file("vecwrap.hoc")
}
{
ocbox_=new VecWrap(1)
}
{object_push(ocbox_)}
vy = new Vector(200)
vx = new Vector(200)
vy.label("")
for i=0,199 { vx.x[i]=fscan() vy.x[i]=fscan()}
0 -65
0.5 -64.9055
1 -64.8102
1.5 -64.7144
2 -64.6184
2.5 -64.5223
3 -64.4262
3.5 -64.3302
4 -64.2345
4.5 -64.1391
5 -64.0443
5.5 -63.9497
6 -63.8554
6.5 -63.7616
7 -63.6684
7.5 -63.5757
8 -63.4835
8.5 -63.3918
9 -63.3005
9.5 -63.2099
10 -63.1199
10.5 -63.0305
11 -62.9414
11.5 -62.8527
12 -62.7648
12.5 -62.6774
13 -62.5906
13.5 -62.5039
14 -62.4174
14.5 -62.3315
15 -62.2463
15.5 -62.1617
16 -62.0769
16.5 -61.9921
17 -61.9075
17.5 -61.8236
18 -61.74
18.5 -61.6568
19 -61.574
19.5 -61.4915
20 -61.4093
20.5 -61.3271
21 -61.2451
21.5 -61.1633
22 -61.0816
22.5 -61
23 -60.9184
23.5 -60.8368
24 -60.7551
24.5 -60.6735
25 -60.5919
25.5 -60.5103
26 -60.4286
26.5 -60.3469
27 -60.2651
27.5 -60.1833
28 -60.1012
28.5 -60.0187
29 -59.936
29.5 -59.8531
30 -59.77
30.5 -59.6863
31 -59.6022
31.5 -59.5177
32 -59.4329
32.5 -59.3475
33 -59.2612
33.5 -59.1742
34 -59.0866
34.5 -58.9985
35 -58.9095
35.5 -58.8198
36 -58.7292
36.5 -58.6376
37 -58.545
37.5 -58.4512
38 -58.3562
38.5 -58.2599
39 -58.1621
39.5 -58.063
40 -57.9621
40.5 -57.8595
41 -57.7551
41.5 -57.6486
42 -57.5402
42.5 -57.4293
43 -57.3158
43.5 -57.1997
44 -57.0805
44.5 -56.9585
45 -56.8328
45.5 -56.7029
46 -56.5691
46.5 -56.4306
47 -56.2878
47.5 -56.1394
48 -55.9836
48.5 -55.8214
49 -55.6516
49.5 -55.4727
50 -55.2835
50.5 -55.0831
51 -54.8702
51.5 -54.6428
52 -54.3987
52.5 -54.1342
53 -53.8452
53.5 -53.5278
54 -53.1763
54.5 -52.7836
55 -52.3348
55.5 -51.8112
56 -51.1883
56.5 -50.4234
57 -49.442
57.5 -48.1004
58 -46.0784
58.5 -42.3003
59 -29.9357
59.5 35.3838
60 2.8697
60.5 -41.4834
61 -63.56
61.5 -70.5728
62 -73.1258
62.5 -74.1626
63 -74.5876
63.5 -74.7346
64 -74.7443
64.5 -74.6818
65 -74.579
65.5 -74.4528
66 -74.3124
66.5 -74.1632
67 -74.0084
67.5 -73.8501
68 -73.6895
68.5 -73.5277
69 -73.3651
69.5 -73.2024
70 -73.0397
70.5 -72.8773
71 -72.7155
71.5 -72.5542
72 -72.3937
72.5 -72.2341
73 -72.0753
73.5 -71.9174
74 -71.7606
74.5 -71.6047
75 -71.4498
75.5 -71.296
76 -71.1432
76.5 -70.9914
77 -70.8408
77.5 -70.6912
78 -70.5428
78.5 -70.3954
79 -70.2491
79.5 -70.1039
80 -69.9598
80.5 -69.8168
81 -69.6749
81.5 -69.5341
82 -69.3943
82.5 -69.2557
83 -69.1182
83.5 -68.9817
84 -68.8463
84.5 -68.7121
85 -68.5789
85.5 -68.4467
86 -68.3157
86.5 -68.1857
87 -68.0568
87.5 -67.9289
88 -67.802
88.5 -67.6763
89 -67.5515
89.5 -67.4259
90 -67.2374
90.5 -67.0557
91 -66.8965
91.5 -66.7529
92 -66.6194
92.5 -66.4924
93 -66.3699
93.5 -66.2504
94 -66.1332
94.5 -66.0178
95 -65.9039
95.5 -65.7912
96 -65.6797
96.5 -65.5692
97 -65.4597
97.5 -65.3178
98 -65.1381
98.5 -64.9876
99 -64.8598
99.5 -64.746
input(vx, vy)
{object_pop()}
{
{
save_window_=ocbox_.g
save_window_.size(0,300,0,200)
scene_vector_[2] = save_window_
ocbox_.g = save_window_
save_window_.save_name("ocbox_.g")
}
ocbox_ = ocbox_.b
ocbox_.map("VecWrap[0]", 436, 104, 308.16, 261.12)
}
objref ocbox_
//End VecWrap[0]

objectvar scene_vector_[1]
{doNotify()}

Loading data, please wait...