Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
Accession:91387
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
References:
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Implementer(s):
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;
/**************************************************************************

	ChanHHrk4.h													JJS 9/06/95
	
		derived from CONICAL, the Computational Neuroscience Class Library
	
	ChanHH implements a Hodgkin-Huxley form active ion channel.  The
	channel conductance G is equal to M^Mexp * H^Hexp, where M and H
	are functions of voltage and time, and Mexp and Hexp are constants
	(integer by convention, but any value is allowed here).

	This is not an abstract base class; you can instantiate it, but it
	doesn't do much.  The UpdateM and UpdateH methods do nothing, which
	means that the gating variables (M and H) stay wherever you set them.
	Subclasses should override these two functions.

	Requires:
		Channel			-- base class
		math			-- ANSI math functions (defined in <math.h>)
		
**************************************************************************/

#ifndef CHANHH_H
#define CHANHH_H

#include "ChannelRk4.h"

class ChanHH : public Channel
{
  public:

	// constructors
	ChanHH( Compartment *pTo, real pMaxG=0.1, real pMexp=1, real pHexp=1 )
	: Channel( pTo, pMaxG ), M(0), H(0), Mexp(pMexp), Hexp(pHexp) {}

	ChanHH( VSink *pTo, VSource *pComp, real pMaxG=0.1, real pMexp=1, real pHexp=1 )
	: Channel( pTo, pComp, pMaxG ), M(0), H(0), Mexp(pMexp), Hexp(pHexp) {}

	// update methods
	
	virtual void Step( const real dt );			// updates G,
												// calls UpdateM and UpdateH	
    
    
    virtual void Stepk1( const real dt );	    // Runge Kutta step functions
    virtual void Stepk2( const real dt );	    // will update Mk's and Hk's
    virtual void Stepk3( const real dt );	
    virtual void Stepk4( const real dt );	
    
    
	virtual void UpdateM( const real dt ) {}	// update M (override this)
	virtual void UpdateH( const real dt ) {}	// update H (override this)
    
    virtual void UpdateMk1(const real dt) {}  //update for the Runge Kutta loop
    virtual void UpdateHk1(const real dt) {}  //update for the Runge Kutta loop
    virtual void UpdateMk2(const real dt) {}  //update for the Runge Kutta loop
    virtual void UpdateHk2(const real dt) {}  //update for the Runge Kutta loop
	virtual void UpdateMk3(const real dt) {}  //update for the Runge Kutta loop
    virtual void UpdateHk3(const real dt) {}  //update for the Runge Kutta loop	
    virtual void UpdateMk4(const real dt) {}  //update for the Runge Kutta loop
    virtual void UpdateHk4(const real dt) {}  //update for the Runge Kutta loop
    
 
 
 
 // public variables:
	
	real M, H;                   // gating variables, updated at each general step 
 	real Mk1, Mk2, Mk3, Mk4;	 // gating variables for rk4			
	real Hk1, Hk2, Hk3, Hk4;
    real Mexp, Hexp;			// exponents in current function

};	

#endif


Loading data, please wait...