Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
Accession:91387
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
References:
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Implementer(s):
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;
/**************************************************************************

	ChanStd.h													JJS 9/08/95
	
		part of CONICAL, the Computational Neuroscience Class Library
	
	Objects of the ChanStd class are active channels whose gating
	variables (M and H) are updated by one of three standard equation
	forms.  All three formulas use the same parameters (A, B, and V0)
	but these have very different meanings from form to form.  The
	equations used are defined in StdForms.h.
	
	Requires:
		ChanAB			-- base class
		StdForms.h		-- standard formula definitions
		
**************************************************************************/

#ifndef CHANSTD_H
#define CHANSTD_H

#include "ChanABrk4.h"
#include "StdForms.h"

// one channel needs four equations, denoted by:
enum StdEqnType {
	kStdAlphaM,
	kStdBetaM,
	kStdAlphaH,
	kStdBetaH,
kQtyStdEqnTypes };

// each equation has three parameters, denoted by:
enum {
	kStdParamA,
	kStdParamB,
	kStdParamV0,
	kStdParamC,
kQtyStdParams };

class ChanStd : public ChanAB
{
  public:

	// constructors
	ChanStd( Compartment *pTo, real pMaxG=0.1, real pMexp=1, real pHexp=1 )
	: ChanAB( pTo, pMaxG, pMexp, pHexp ) {}
	ChanStd( VSink *pTo, VSource *pComp, real pMaxG=0.1, real pMexp=1, real pHexp=1 )
	: ChanAB( pTo, pComp, pMaxG, pMexp, pHexp ) {}
	
	// function defining method (a setter)
	virtual void SetFunc( StdEqnType pType, StdForm pForm, real pA, real pB, real pV0, real pC )
	{	itsForm[pType] = pForm;
		itsParam[pType][kStdParamA] = pA;
		itsParam[pType][kStdParamB] = pB;
		itsParam[pType][kStdParamV0]= pV0;
		itsParam[pType][kStdParamC]= pC;
		
	}
		
	// channel activation/inactivation functions
	virtual real AlphaM( const real V ) const
	{	return StdFormula( itsForm[kStdAlphaM], V,
			itsParam[kStdAlphaM][kStdParamA], 
			itsParam[kStdAlphaM][kStdParamB],
			itsParam[kStdAlphaM][kStdParamV0],
            itsParam[kStdAlphaM][kStdParamC] ); }
		
	virtual real BetaM( const real V) const
	{	return StdFormula( itsForm[kStdBetaM], V,
			itsParam[kStdBetaM][kStdParamA], 
			itsParam[kStdBetaM][kStdParamB],
			itsParam[kStdBetaM][kStdParamV0],
            itsParam[kStdBetaM][kStdParamC] ); }

	virtual real AlphaH( const real V ) const
	{	return StdFormula( itsForm[kStdAlphaH], V,
			itsParam[kStdAlphaH][kStdParamA], 
			itsParam[kStdAlphaH][kStdParamB],
			itsParam[kStdAlphaH][kStdParamV0],
            itsParam[kStdAlphaH][kStdParamC] ); }

	virtual real BetaH( const real V ) const
	{	return StdFormula( itsForm[kStdBetaH], V,
			itsParam[kStdBetaH][kStdParamA], 
			itsParam[kStdBetaH][kStdParamB],
			itsParam[kStdBetaH][kStdParamV0],
            itsParam[kStdBetaH][kStdParamC] ); }

	// public variables which define the functions:
	
	StdForm	itsForm[kQtyStdEqnTypes];	// format (kExpForm, kSigForm, kLinForm)
	real	itsParam[kQtyStdEqnTypes][kQtyStdParams];
};

#endif


Loading data, please wait...