Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
Accession:91387
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
References:
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Implementer(s):
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;
/**************** Channel general Set Up : ChannelStd or TM  ****************/
#ifndef CHANLIST_H
#define CHANLIST_H

#include "ChanStdRk4.h"		    // for Hodgkin-Huxley channels
#include "ChanTM.h"  
#include "AlphaSyn.h"
#include "AlphaSynI.h" 
#include "AlphaSynS.h"  
   
const real ENA = 0.045;			// sodium equilibrium potential 
const real EK = -0.070;			// potassium equilibrium potential 
const real ECA = 0.09;			// calcium equilibrium potential 
const real Eex =0;              // exitation equilibrium potential
const real Ein =-0.07;          // exitation equilibrium potential



const real sig = -0.006;        // Tuning of spikes (XJ Wang) 
const real phi = 200/7;         // Temperature coeff (XJ Wang)




/****************************** Wang XJ 1993 ********************************/

void SetUpNaWangXJChannel( ChanStd &pChan )
{
	// set the equilibrium potential
	pChan.SetE( ENA );

	// set up "M" (activation) gating variable
	pChan.Mexp = 3;
	pChan.variation =0;    // 0 for use of the steady state only. Complete dynamic 1.
	pChan.SetFunc( kStdAlphaM, kLinForm, -phi*0.1E6, -10E-3, -0.030+sig, 0 );
	pChan.SetFunc( kStdBetaM, kExpForm, phi*4.0E3, -18.0E-3, -0.055+sig, 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdAlphaH, kExpForm, phi*70.0, -20.0E-3, -0.044+sig, 0 );
	pChan.SetFunc( kStdBetaH, kSigForm, phi*1.0E3, -10.0E-3, -0.014+sig, 0 );
}

void SetUpKWangXJChannel( ChanStd &pChan )
{
	// set the equilibrium potential
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 4;
	pChan.SetFunc( kStdAlphaM, kLinForm, -phi*10.0E3, -10.0E-3, -0.034+sig, 0 );
	pChan.SetFunc( kStdBetaM, kExpForm, phi*125.0, -80.0E-3, -0.044+sig, 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 0;

}


void SetUpNaPWangXJChannel( ChanTM &pChan )
{
	// set the equilibrium potential
	pChan.SetE( ENA );

	// set up "M" (activation) gating variable
	pChan.Mexp = 1;
	pChan.variation= 0;
	pChan.SetFunc( kStdInfM, kSigForm, 1, -0.005, -0.051 , 0 );
	
	pChan.Hexp=0;
	
}

void SetUpKs1WangXJChannel( ChanTM &pChan )
{
	// set the equilibrium potential
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 1;
	pChan.SetFunc( kStdTauM, kCstForm, 0.010 , 0 , 0 , 0 );
	pChan.SetFunc( kStdInfM, kSigForm, 1 , -0.0065, -0.034 , 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdTauH, kSioForm, 0.220 , -0.00685 , -0.0716, 0.200 );
	pChan.SetFunc( kStdInfH, kSigForm, 1 , 0.0066, -0.065 , 0 );
		
}

void SetUpKs2WangXJChannel( ChanTM &pChan )
{
	// set the equilibrium potential
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 1;
	pChan.SetFunc( kStdTauM, kCstForm, 0.010 , 0 , 0 , 0 );
	pChan.SetFunc( kStdInfM, kSigForm, 1 , -0.0065, -0.034 , 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdTauH, kSioForm, 1.2 , -0.004 , -0.0636, 0.200 );
	pChan.SetFunc( kStdInfH, kSigForm, 1 , 0.0066, -0.065, 0 );	
		
}

/****************************** Bhala Bower 1993 ***************************/


void SetUpNaBhalaChannel( ChanStd &pChan )
{
    pChan.UndoThreshold();
	// set the equilibrium potential
	pChan.SetE( ENA );
    pChan.Setrho(-8E-3); 
   	pChan.variation =1;    // 0 for use of the steady state only. Complete dynamic 1.
	// set up "M" (activation) gating variable
	pChan.Mexp = 3;
	pChan.SetFunc( kStdAlphaM, kLinForm, -320E3, -0.004, -0.042, 0 );
	pChan.SetFunc( kStdBetaM, kLinForm, 280E3, 5E-3, -0.015, 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdAlphaH, kExpForm, 128, -18E-3, -0.038, 0 );
	pChan.SetFunc( kStdBetaH, kSigForm, 4E3, -5E-3, -0.015, 0 );
}

void SetUpNaBhalaChannelTres( ChanStd &pChan, real pSlope )
{
    pChan.DoThreshold();
	// set the equilibrium potential
	pChan.SetE( ENA );
    pChan.Setrho(-8E-3);
    pChan.SetSlope(pSlope); 
	// set up "M" (activation) gating variable
	pChan.Mexp = 3;
	pChan.SetFunc( kStdAlphaM, kLinForm, -320E3, -0.004, -0.042, 0 );
	pChan.SetFunc( kStdBetaM, kLinForm, 280E3, 5E-3, -0.015, 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdAlphaH, kExpForm, 128, -18E-3, -0.038, 0 );
	pChan.SetFunc( kStdBetaH, kSigForm, 4E3, -5E-3, -0.015, 0 );
}
	
void SetUpKfastChannel( ChanTM &pChan )
{
	// set the equilibrium potential
	pChan.SetE( EK );
	pChan.Setrho(-8E-3);

	// set up "M" (activation) gating variable
	pChan.Mexp = 2;
	pChan.SetFunc( kStdTauM, kKftForm, 0 , 0 , 0 , 0 );
	pChan.SetFunc( kStdInfM, kSigForm, 1 , -0.01046, -0.01324 , 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdTauH, kCstForm, 0.05 , 0 , 0 , 0 );
	pChan.SetFunc( kStdInfH, kSioForm, 0.866 , -0.014, -0.006525 , 0.134 );
	
		
}
void SetUpCaBhalaChannel( ChanStd &pChan )
{
	// set the equilibrium potential
	pChan.SetE( ECA );

	// set up "M" (activation) gating variable
	pChan.Mexp = 3;
	pChan.SetFunc( kStdAlphaM, kSigForm, 7500, -7E-3, 0.013, 0 );
	pChan.SetFunc( kStdBetaM, kSigForm, 1650, 4E-3, 0.014, 0 );
	
	// set up "H" (inactivation) gating variable
    pChan.Hexp = 1;
	pChan.SetFunc( kStdAlphaH, kSigForm, 6.8, 12E-3, -0.030, 0 );
	pChan.SetFunc( kStdBetaH, kSigForm, 60, -11E-3, 0, 0 );
	
}

void SetUpKCaBhalaChannel( ChanStd &pChan )
{
	// set the equilibrium potential
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 1;
	pChan.SetFunc( kStdAlphaM, kExpForm, 5*0.015, 27E-3, 0.065, 0 );
	pChan.SetFunc( kStdBetaM, kCstForm, 50, 0, 0, 0 );
	
	// set up "H" (inactivation) gating variable
    pChan.Hexp = 0;
	
}




void SetUpKslowChannel( ChanTM &pChan )
{
	// set the equilibrium potential
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 2;
	pChan.SetFunc( kStdTauM, kKslForm, 0 , 0 , 0 , 0 );
	pChan.SetFunc( kStdInfM, kSigForm, 1 , -0.01046, -0.01324, 0);
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdTauH, kCstForm, 0.2 , 0 , 0 , 0 );
	pChan.SetFunc( kStdInfH, kSioForm, 0.866 , -0.014, -0.006525 , 0.134 );
	
		
}

void SetUpABhalaChannel( ChanTM &pChan )
{
	// set the equilibrium potential
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 1;
	pChan.SetFunc( kStdTauM, kCstForm, 1E-3, 0, 0, 0 );
	pChan.SetFunc( kStdInfM, kSigForm, 1, -30.0E-3, -0.042, 0 );  //13
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdTauH, kCstForm, 50E-3, 0, 0, 0 );
	pChan.SetFunc( kStdInfH, kSigForm, 1, 40.0E-3, -0.110, 0 );  //18
}

/****************************** Wang, McKenzie 1996 ***************************/

void SetUpAWangChannel( ChanTM &pChan )
{   // Without the indicated shift (SenseLab ModelDB)
	// set the equilibrium potential
	pChan.SetE( EK );
    
	// set up "M" (activation) gating variable
	pChan.Mexp = 1;
	pChan.SetFunc( kStdTauM, kWangForm, 25E-3, 10E-3, -0.045, 0.75 );
	pChan.SetFunc( kStdInfM, kSigForm, 1, -14.0E-3, 0.0076, 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdTauH, kWangForm, 55.5E-3, 5E-3, -0.070, 0.99 );
	pChan.SetFunc( kStdInfH, kSigForm, 1, 6.0E-3, -0.0474, 0 );
}

void SetUpKdWangChannel( ChanTM &pChan )
{   // Without the indicated shift (SenseLab ModelDB)
	// set the equilibrium potential
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 1;
	pChan.SetFunc( kStdTauM, kWangForm, 285E-3, 18E-3, -0.050, 0.5 );
	pChan.SetFunc( kStdInfM, kSigForm, 1, -10.0E-3, 0.021, 0 );
	
	// set up H
	
	pChan.Hexp=0;
	
}


/*************************** Huguenard, McCormick 1992 ***********************/


void SetUpA1Channel( ChanTM &pChan )
{   
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 4;
	pChan.SetFunc( kStdTauM, kAmForm, 0, 0, 0, 0 );
	pChan.SetFunc( kStdInfM, kSigForm, 1, -8.5E-3, -0.060, 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdTauH, kAh1Form, 0, 0, 0, 0);
	pChan.SetFunc( kStdInfH, kSigForm, 1, 6.0E-3, -0.078, 0 );
}

void SetUpA2Channel( ChanTM &pChan )
{
	pChan.SetE( EK );

	// set up "M" (activation) gating variable
	pChan.Mexp = 4;
	pChan.SetFunc( kStdTauM, kAmForm, 0, 0, 0, 0 );
	pChan.SetFunc( kStdInfM, kSigForm, 1, -20E-3, -0.036, 0 );
	
	// set up "H" (inactivation) gating variable
	pChan.Hexp = 1;
	pChan.SetFunc( kStdTauH, kAh2Form, 0, 0, 0, 0);
	pChan.SetFunc( kStdInfH, kSigForm, 1, 6.0E-3, -0.078, 0 );
}



/*********************** Synapses general set up  ***********************/

// Be careful with rise and decay times : check that if they are equal
// you've put this case in AlphaSyn Step method (default : removed)  


void SetUpSynE( AlphaSyn &pSyn,real pTaud, real pTauR, real Tresh  )
{
    pSyn.Vthresh = Tresh;
    pSyn.pulseTime = 0.005;
    pSyn.tau1 = pTauR;      
    pSyn.tau2 = pTaud;
    pSyn.SetE(Eex);

}

void SetUpSynI( AlphaSyn &pSyn, real pTaud, real pTauR, real Tresh )
{
    pSyn.Vthresh = Tresh;
    pSyn.pulseTime = 0.005;
    pSyn.tau1 = pTauR;      
    pSyn.tau2 = pTaud;
    pSyn.SetE(Ein);
 
}

void SetUpSynS( AlphaSynS &pSyn, real pTaud, real pTauR, real Tresh )
{
    pSyn.Vthresh = Tresh;
    pSyn.pulseTime = 0.005;
    pSyn.tau1 = pTauR;      
    pSyn.tau2 = pTaud;
    pSyn.SetE(Ein);
 
}


void SetUpSynI2( AlphaSynI &pSyn, real pTauD, real pTauR, real Tresh )
{
    pSyn.Vthresh = Tresh;
    pSyn.tau1 = pTauR;      
    pSyn.tau2 = pTauD;
    pSyn.SetE(Ein);

}
/*************************** Synaptic noise **********************************/
/*
void SetExitatoryNoise(SynNoise &pSyn){
  pSyn.SetE(Eex);
  pSyn.SetTaus(0.0005,0.010);
  pSyn.SetMean(0.2);
}

void SetInhibitoryNoise(SynNoise &pSyn){
  pSyn.SetE(Ein);
  pSyn.SetTaus(0.0005,0.007);
  pSyn.SetMean(0.2);
}
*/
#endif

Loading data, please wait...