Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
Accession:91387
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
References:
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Implementer(s):
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;
/**************************************************************************

	Input.h													JJS 24/03/2003
	
		addition to CONICAL, the Computational Neuroscience Class Library
	
	An Input is a Current source in Sink. Its conductance 
    is computed trough time from a pre-entered function. 
    It is an improvement of the step Injector adapted to olfactory inputs.

	Requires:
		Channel			-- base class
**************************************************************************/

#ifndef INPUT_H
#define INPUT_H

#include "ChannelRk4.h"
#include "NoiseSource.h"


class Input : public Channel
{
  public:

	Input( VSink *pTo, real pTau1, real pTau2, real pAmp )				// constructor
	: Channel( pTo, 0),Tau1(pTau1), Tau2(pTau2),Start(0.1) {SetAmp(pAmp);}
	
	virtual void Init(const real dt){
	t=0;
	Start=Start+0.001*Var();
    }
	
	virtual void Step(const real dt){                                   //stepper
        t+=dt;                 
        if(t<Start){G=0;Gk1=0;}
        else {
           G=Amplitude*(1-exp(-(t-Start)/Tau1));
           Gk0=Amplitude*dt*(1/Tau1*exp(-(t-Start)/Tau1));
           Gk1=G+Gk0;
           Gk2=Gk1; 
           Gk3=Gk2; 
           Gk4=Gk3;   
        }
        //if(t>2){t=0;}
    }  
     
    virtual void SetAmp(real pamp){Amplitude=pamp*GetgMax();
                                   t=0;  }
    real GetAmp(){return Amplitude/GetgMax();}                               
                                   
   	real GetgMax(){                   
        real dtau = Tau1-Tau2;
        return  1;   
    }
              
                                		
	virtual real GetEG( void ) const { return E*G; }   // inspectors
	
    virtual real GetEGk1(void) const { return E*Gk1; }   // inspectors Runge Kutta
	virtual real GetEGk2(void) const { return E*Gk2; }
	virtual real GetEGk3(void) const { return E*Gk3; }
	virtual real GetEGk4(void) const { return E*Gk4; }
	
	
	real Gk0;
	
  protected:
	real t;
	real Tau1, Tau2;
	real Amplitude;
	real Start;
};

#endif

Loading data, please wait...