Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
Accession:91387
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
References:
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Implementer(s):
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;
/**************************************************************************

	VSink.h														JJS 8/29/95
	
		part of CONICAL, the Computational Neuroscience Class Library
	
	A VSink, or voltage sink, is an object which can can receive current
	through a Current.

	Requires:
		nothing
		
**************************************************************************/

#ifndef VSINK_H
#define VSINK_H

class Current;

#ifndef NULL
#define NULL 0
#endif

// define a "CurrentNode" class which will be used to keep
// a list of Currents to this VSink...
// NOTE: though a public class, this CurrentNode should NOT be used
// by users!  Its implementation may change in the future.

class CurrentNode
{
  public:
	CurrentNode( Current *pCurrent ) { itsCurrent=pCurrent; itsNext=NULL; }
	Current *itsCurrent;
	CurrentNode *itsNext;
};

class VSink
{
  friend class Current;
  public:

	VSink( void );					// constructor
	~VSink( void );					// destructor
	
  protected:
  	
  	CurrentNode *itsCurrentList;				// list of Currents
  	virtual void AddCurrent( Current *pCurrent );		// add a Current to the list
	virtual void RemoveCurrent( Current *pCurrent );	// remove a Current
												//	(happens automatically when the Current dies)
	char isDying;
};

#endif

Loading data, please wait...