Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;
#ifndef PARAM_H
#define PARAM_H

/************** Defines some global paramaters -- all in SI units *************/


const real TMAX = 1;            //simulation time (sec)
const real DT   = 40E-6;	    //simulation time step (sec)
const int Nstep = 1+int(TMAX/DT); //number of steps

// Cells properties  
const real RM = 10;		        // specific membrane resistance (ohm m^2)
const real CM = 0.01;			// specific membrane capacitance (farad/m^2)
const real EREST = -0.0665;	    // resting membrane potential (volts)
const real ELEAK = -0.0665;	    // "leak" potential (volts)
const real Area=3E-10;          // m^2 

real gA=100;                    //Conductance KA  (Siemens/ m^2)
real gNa=500;                   //Conductance Sodium 
real gK=900;                    //Conductance delayed rectifier
real gKs=310;                   //Conductance conductance potassium slow 
real gNaP=1.1;                  //Conductance sodium persistant 
real DeltaG=0.5;                  //Max variation in conductances (%) 
real Slop=0.0001;

// Input properties
real gInput=30;                 //Tuft synaptic conductance (Siemens / m^2)
const real DeltaGI=0;         //Variation of in amplitudes    (%)
real InpR =0.03;                //Input decay and rise  
real InpD =0.3;             

// Mitral cells
const int NetSize=10;            // Size of the square network in number of cell
const int Ncell=NetSize*NetSize; // Number of cells

//Synapses propeties
real Threshold=-0.03;            // Voltage for triggering synapse

//Inhibition properties
real Ratio=0;                   // ratio of type 1 and 2 inhibition
// single Event;
real P0=0.0005;
real gSingI=0.2;
real taudecay=0.01;
real taurise=0.0002;
real gI=0.02;                      //mean conductance (S/m^2) for lateral 
real SgI=0.2;                    //and self Inhibition
real Li=5;                //typical length for inhibitory arborization (nbr of cells)
real TaudI=0.05;                // decay time of Inhibition 
real TaurI=0.0002;               // rise time
real LatI=0.0005;                // Latency
real STaudI=0.1;                // decay time of Inhibition 
real STaurI=0.0002;               // rise time
real SLatI=0.0005;                // Latency
real TaudI2=0.01;                // decay time of Inhibition 
real TaurI2=0.003;               // rise time
real Fmax=40;
real Fsat=100;
real MeanRate=1/2;
real tfd=0.1;
real tfr=0.015;

//Excitation properties
real gE=0;                      //mean conductance (S/m^2) for lateral  
real SgE=0;                     //and self Exitation 
const real Le=4;                //typical length for exitarory arborization (nbr of cells)
real TaudE=0.008;               // decay time of Excitation 
real TaurE=0.0005;               // rise time
real LatE=0.0014;                // Latency


Loading data, please wait...