Cell splitting in neural networks extends strong scaling (Hines et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:97917
Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.
Reference:
1 . Hines ML, Eichner H, Schürmann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J Comput Neurosci 25:203-10 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Generic;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
/
splitcell
nrntraub
mod
alphasyndiffeq.mod
alphasynkin.mod *
alphasynkint.mod *
ampa.mod
ar.mod *
cad.mod *
cal.mod *
cat.mod *
cat_a.mod *
gabaa.mod
iclamp_const.mod *
k2.mod *
ka.mod *
ka_ib.mod *
kahp.mod *
kahp_deeppyr.mod *
kahp_slower.mod *
kc.mod *
kc_fast.mod *
kdr.mod *
kdr_fs.mod *
km.mod *
naf.mod *
naf_tcr.mod
naf2.mod *
nap.mod *
napf.mod *
napf_spinstell.mod *
napf_tcr.mod *
par_ggap.mod *
pulsesyn.mod *
rampsyn.mod *
rand.mod *
ri.mod
traub_nmda.mod
                            
NEURON {
	POINT_PROCESS GABAA
	RANGE tau, e, i
	NONSPECIFIC_CURRENT i
	GLOBAL gfac
: for network debugging
	USEION gaba1 WRITE igaba1 VALENCE 0
	USEION gaba2 WRITE igaba2 VALENCE 0
	RANGE srcgid, targid, comp, synid
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	tau = 0.1 (ms) <1e-9,1e9>
	e = 0	(mV)
	gfac = 1
}

ASSIGNED {
	v (mV)
	i (nA)
	igaba1 (nA)
	igaba2 (nA)
	srcgid
	targid
	comp
	synid
}

STATE {
	g (uS)
}

INITIAL {
	g=0
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	i = gfac*g*(v - e)
	igaba1 = gfac*g
	igaba2 = -gfac*g
}

DERIVATIVE state {
	g' = -g/tau
}

NET_RECEIVE(weight (uS)) {
	state_discontinuity(g, g + weight)
}

Loading data, please wait...