Currents contributing to decision making in neurons B31-B32 of Aplysia (Hurwitz et al. 2008)

 Download zip file 
Help downloading and running models
Accession:116606
"Biophysical properties of neurons contributing to the ability of an animal to decide whether or not to respond were examined. B31/B32, two pairs of bilaterally symmetrical Aplysia neurons, are major participants in deciding to initiate a buccal motor program, the neural correlate of a consummatory feeding response. B31/B32 respond to an adequate stimulus after a delay, during which time additional stimuli influence the decision to respond. B31/B32 then respond with a ramp depolarization followed by a sustained soma depolarization and axon spiking that is the expression of a commitment to respond to food. Four currents contributing to decision making in B31/B32 were characterized, and their functional effects were determined, in current- and voltage-clamp experiments and with simulations. ... Hodgkin-Huxley kinetic analyses were performed on the outward currents. Simulations using equations from these analyses showed that IK-V and IK-A slow the ramp depolarization preceding the sustained depolarization. The three outward currents contribute to braking the B31/B32 depolarization and keeping the sustained depolarization at a constant voltage. The currents identified are sufficient to explain the properties of B31/B32 that play a role in generating the decision to feed."
Reference:
1 . Hurwitz I, Ophir A, Korngreen A, Koester J, Susswein AJ (2008) Currents contributing to decision making in neurons B31/B32 of Aplysia. J Neurophysiol 99:814-30 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Aplysia;
Cell Type(s): Aplysia B31/B32 neuron;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: SNNAP;
Model Concept(s): Action Selection/Decision Making;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I A; I K;
/
hurwitzEtAl2008
with_all_currents_fast_stimulus
B_B63_K.a *
B_B63_K.b *
B_B63_Na.A *
B_B63_Na.B *
b31_axon.neu *
B31_axon_2_Soma.es *
b31_axon_K.vdg *
b31_axon_K2.vdg *
b31_axon_leak.vdg *
b31_axon_Na.vdg *
b31_leak_fixed.vdg *
b31_leak_only.neu *
b31_soma_K1.A *
b31_soma_K1.B *
b31_soma_K1.vdg *
b31_soma_K2.A *
b31_soma_K2.B *
b31_soma_K2.vdg *
b31_soma_K3.A *
b31_soma_K3.B *
b31_soma_K3.vdg *
b31_with_axon.ntw *
b31_with_axon.ous
b31_with_axon.ous.mnu
b31_with_axon.smu
b31_with_axon.smu.exec
b31_with_axon.smu.hmn
b31_with_axon.smu.ing
b31_with_axon.trt
b31_with_axon_vc.trt *
b31_with_axon_with_I_del.ous *
ousgrf.def *
simufiles.usd
                            
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>    modules name: vdg		>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Ivd:		> 	Current due to a voltage-dependent conductance	>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>------------------------------->--------------------------------------->
				>		p			>
	1			>	G= g x A x B 		(1)	>
	b31_soma_k1.A	>A<	>					>
	b31_soma_K1.B	>B<	>					>
	15.0		>25 g<	>					>
	1.0		>4 P<	>	Ivd = G x (V -E)		>
	-70.0		>-70 E<	>					>
				>					>
>------------------------------->--------------------------------------->
>				>		p			>
>	2			>	Ivd= g x m x h 		(2)	>
>	model.m		>m<	>					>
>	model.h		>h<	>					>
>	0.012 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	35 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
>				>		p			>
>	3			>	G= g x A		(3)	>
>	model.A		>A<	>					>
>	0.012 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	-72 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
>				>		p			>
>	4			>	Ivd= g x m 		(4)	>
>	model.m		>m<	>					>
>	0.012 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	35 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
>				>					>
>	5			>	Ivd = G x (V -E)	(5)	>
>	0.012 		>g<	>					>
>	-72 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->

END:

Loading data, please wait...