Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)

 Download zip file 
Help downloading and running models
Accession:118631
Neocortical neurons are classified by current–frequency relationship. This is a static description and it may be inadequate to interpret neuronal responses to time-varying stimuli. Theoretical studies (Brunel et al., 2001; Fourcaud-Trocmé et al. 2003; Fourcaud-Trocmé and Brunel 2005; Naundorf et al. 2005) suggested that single-cell dynamical response properties are necessary to interpret ensemble responses to fast input transients. Further, it was shown that input-noise linearizes and boosts the response bandwidth, and that the interplay between the barrage of noisy synaptic currents and the spike-initiation mechanisms determine the dynamical properties of the firing rate. In order to allow a reader to explore such simulations, we prepared a simple NEURON implementation of the experiments performed in Köndgen et al., 2008 (see also Fourcaud-Trocmé al. 2003; Fourcaud-Trocmé and Brunel 2005). In addition, we provide sample MATLAB routines for exploring the sandwich model proposed in Köndgen et al., 2008, employing a simple frequdency-domain filtering. The simulations and the MATLAB routines are based on the linear response properties of layer 5 pyramidal cells estimated by injecting a superposition of a small-amplitude sinusoidal wave and a background noise, as in Köndgen et al., 2008.
References:
1 . Koendgen H, Geisler C, Wang XJ, Fusi S, Luescher HR, Giugliano M (2004) The dynamical response of single cells to noisy time-varying currents Soc Neurosci Abstr :640
2 . Köndgen H, Geisler C, Fusi S, Wang XJ, Lüscher HR, Giugliano M (2008) The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex 18:2086-97 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Abstract Wang-Buzsaki neuron;
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Parameter Fitting; Methods; Rate-coding model neurons;
Implementer(s): Giugliano, Michele [mgiugliano at gmail.com]; Delattre, Vincent;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t; I K;
fitme is the script that starts the whole process of fitting (although it assumed that the real input-output data + confidence intervals where available in the workspace)
It calls iteratively the function 'anneal()', which is my implementation of a montecarlo optimization (i.e. simulated annealing - see Kirkpatrick et al. seminal work; or refer to Numerical Recipes).

Anneal() calls cost() to determine whether the actual change of the (free) model parameters to fit lead to an improvement in the fitness index..

cost() is the actual fitness index that is calculated at any step of the optimization
It calls 'Model()'..

Model() is the actual routine that performs the model 'simulation' (which is actually frequency-domain filtering)..

plot_model   is a script to simply provide a visual indication of the fit performance (or to plot the model output)

Loading data, please wait...