Response properties of neocort. neurons to temporally modulated noisy inputs (Koendgen et al. 2008)

 Download zip file 
Help downloading and running models
Neocortical neurons are classified by current–frequency relationship. This is a static description and it may be inadequate to interpret neuronal responses to time-varying stimuli. Theoretical studies (Brunel et al., 2001; Fourcaud-Trocmé et al. 2003; Fourcaud-Trocmé and Brunel 2005; Naundorf et al. 2005) suggested that single-cell dynamical response properties are necessary to interpret ensemble responses to fast input transients. Further, it was shown that input-noise linearizes and boosts the response bandwidth, and that the interplay between the barrage of noisy synaptic currents and the spike-initiation mechanisms determine the dynamical properties of the firing rate. In order to allow a reader to explore such simulations, we prepared a simple NEURON implementation of the experiments performed in Köndgen et al., 2008 (see also Fourcaud-Trocmé al. 2003; Fourcaud-Trocmé and Brunel 2005). In addition, we provide sample MATLAB routines for exploring the sandwich model proposed in Köndgen et al., 2008, employing a simple frequdency-domain filtering. The simulations and the MATLAB routines are based on the linear response properties of layer 5 pyramidal cells estimated by injecting a superposition of a small-amplitude sinusoidal wave and a background noise, as in Köndgen et al., 2008.
1 . Koendgen H, Geisler C, Wang XJ, Fusi S, Luescher HR, Giugliano M (2004) The dynamical response of single cells to noisy time-varying currents Soc Neurosci Abstr :640
2 . Köndgen H, Geisler C, Fusi S, Wang XJ, Lüscher HR, Giugliano M (2008) The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cereb Cortex 18:2086-97 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Abstract Wang-Buzsaki neuron;
Channel(s): I Na,t; I K;
Gap Junctions:
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Parameter Fitting; Methods; Rate-coding model neurons;
Implementer(s): Giugliano, Michele [mgiugliano at]; Delattre, Vincent;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t; I K;
// Single-compartmental model cell, quick and dirty implementation
// In the context of the stimulation of a single cell by a sinusoidal noisy current, this script
// performs the frequency domain analysis.
// It generates a matrix on a file, containing the gain, the phase and the frequency of stimulation.
// You can choose to do many trials for a statistical analysis.
// This script is mean to be run under Linux and is parallelized. 
// by M. Giugliano and V. Delattre(2008)
// Brain Mind Institute, EPFL, 

load_file("nrngui.hoc")                   // Loading of the standard GUI controls...
load_file("mylibs/graphs.hoc")            // Loading some ad-hoc proc for displaying live traces...
load_file("mylibs/singlecompneuron.hoc")  // Loading the model cell template..
load_file("mylibs/IsinunoisyS_proc.hoc")  // Loading the procedure for a "sinunoisy" current injection...
load_file("mylibs/myinit.hoc")            // Loading some ad-hoc proc for file creation and initialization...
load_file("mylibs/TFparams.hoc")          // Settings for the TF...
load_file("mylibs/Functions.hoc")         // Loading some had-hoc function: mysin, err...
load_file("mylibs/FDA_proc.hoc")          // Loading the procedure for the frequency domain analysis...
load_file("mylibs/SetSeed_proc.hoc")      // Loading the Seeding procedure



////////////////////////SIMULATION CONTROL////////////////////////////////////////////////////////////////

Nfreq   = 51                      // Number of frequency to be tested
Ntrials = 15                      // Number of repetitions
Ntot    = Ntrials * Nfreq         // Number of tasks

Vrest              = -67          // [mV]
Amp                = 0.2          // [pA]Sinusoidal input amplitude
tstart             = 0            // [ms] 
tau                = 2.5          // [ms] 
freqmax            = 1.16^Nfreq   // [Hz]Sinusoidal input maximum frequency
freqmin            = 1.16         // [Hz]Sinusoidal input minimum frequency 

tstop              = Tdelay + T1 + T    //Total simulation duration [ms]
t                  = tstart

vth_wb(0.5)     = 0.


//////////////////////////OBJECTS DECLARATION/////////////////////////////////////////////////////////////

objref outspikes, indepvar, myhist, fitsine, vec

outspikes = new Vector()

objref result_file1, result_file2
strdef aptime, linear

result_file1 = new File("result/Sresult_s=0.55_m=-0.25.x")

/////////////////////////// Experimentation //////////////////////////////////////////////////////////////

my_k  = 0
my_i  = 0
freq  = freqmin
mu    = -0.25 
sigma = 0.55 

ccc = 1 // just a counter

for(my_k=0; my_k<= 1; my_k = my_k +1){          // This loops sweeps accross sigmas
	for(my_i=0; my_i<= Ntot-1; my_i = my_i+ 1){ // This loops sweeps accross the frequencies
			SetSeed()                           // We want every trace to differ from the others
			remainder = my_i % Nfreq            // We want Ntrials repetitions of each frequency
			freq = freqmin ^ (remainder + 1)         
			print ccc ,"of ", 2 * Ntot, "simulations completed "
			gain = 0
			phase = 0       
			result_file1.aopen()                 // We append the file
			result_file1.printf("%d %d %f %f %f %f\n",my_k,my_i,freq,gain,phase,R0)

            ccc = ccc + 1
	sigma = sigma + 0.3

printf("The data points of the frequency domain analysis are now available for further analysis and plot!\n")

Loading data, please wait...