Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
36
41
67
71
130
174
178
196
216
231
322
345
350
377
404
420
445
451
457
471
490
513
524
544
571
587
638
681
742
751
771
780
802
850
883
888
901
918
988
1000
1005
1009
1032
1108
1122
1138
1233
1272
1285
1310
1340
1345
1374
1385
1399
1444
1568
1652
1671
1717
1736
1797
1802
1814
1825
1874
1911
1923
1967
2121
2164
2188
2194
2201
2207
2214
2228
2239
2270
2347
2353
2396
2402
2407
2418
2433
2462
2522
2563
2567
2595
2606
2616
2638
2664
2709
2715
2756
2769
2806
2818
2845
2851
2861
2865
2870
2918
2933
3008
3014
3066
3152
3216
3269
3276
3308
3331
3340
3463
3470
3475
3483
3507
3515
3564
3574
3580
3621
3627
3643
3684
3766
3814
3867
3878
3885
3891
3920
3967
4016
4025
4030
4034
4088
4119
4162
4168
4174
4189
4227
4269
4339
4343
4366
4403
4441
4493
4592
4603
4631
4683
4691
4721
4736
4762
4788
4862
4910
4922
4957
4969
4981
4998
5058
5096
5119
5126
5161
5175
5194
5270
5274
5279
5290
5296
5307
5314
5337
5368
5377
5387
5391
5407
5452
5471
5494
5508
5536
5565
5570
5634
5645
5650
5683
5695
5713
5774
5806
5825
5864
5870
5906
5921
5966
5971
5977
5986
6006
6012
6029
6033
6056
6069
6131
6165
6170
6202
6223
6238
6326
6344
6374
6456
6512
6517
6523
6528
6536
6659
6666
6742
6760
6827
6835
6887
6915
6936
7150
7176
7199
7275
7289
7348
7352
7387
7393
7399
7409
7440
7475
7496
7562
7568
7582
7647
7653
7658
7671
7727
7731
7766
7827
7839
7900
7911
7938
7950
7998
8004
8016
8026
8039
8086
8103
8139
8160
8171
8194
8236
8302
8312
8351
8434
8453
8464
8469
8486
8525
8530
8581
8589
8618
8675
8682
8715
8720
8735
8741
8751
8764
8770
8798
8823
8831
8836
8848
8869
8940
8967
8995
9032
9048
9077
9110
9120
9134
9165
9202
9212
9246
9290
9309
9359
9382
9395
9454
9493
9539
9555
9579
9609
9696
9700
9705
9720
9745
9750
9755
9778
9789
9810
9820
9850
9863
9894
9924
9947
9962
9971
9994

Loading data, please wait...