Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
10
44
58
110
167
202
247
265
271
311
316
341
347
406
457
510
522
566
608
635
672
678
720
746
757
772
776
798
825
830
835
878
896
928
1037
1067
1097
1101
1190
1264
1316
1325
1332
1414
1545
1696
1719
1732
1737
1837
1950
1955
2093
2149
2201
2206
2211
2217
2239
2248
2285
2290
2297
2301
2323
2338
2343
2353
2365
2376
2573
2583
2589
2616
2655
2721
2726
2731
2768
2808
2825
2963
2984
3010
3016
3136
3177
3254
3258
3263
3297
3434
3534
3551
3559
3595
3600
3771
3778
3794
3820
3825
3868
3883
3909
3915
3920
3963
4062
4078
4151
4178
4186
4216
4251
4275
4327
4397
4441
4512
4527
4535
4552
4577
4609
4615
4677
4688
4700
4760
4770
4824
4857
4879
4892
4975
4980
4999
5005
5090
5132
5139
5191
5197
5202
5207
5254
5297
5314
5324
5383
5388
5399
5405
5422
5437
5463
5469
5522
5537
5543
5591
5604
5631
5657
5758
5779
5818
5840
5912
5926
5943
5973
5980
6067
6078
6152
6179
6190
6195
6206
6307
6313
6355
6360
6429
6435
6447
6453
6462
6486
6505
6565
6571
6613
6619
6624
6789
6847
6864
6870
6881
6886
7026
7033
7047
7053
7061
7082
7091
7097
7104
7133
7185
7190
7195
7312
7323
7338
7370
7416
7429
7448
7452
7461
7530
7569
7575
7595
7629
7690
7695
7754
7837
7859
7863
7868
7880
7902
7930
7934
7957
7991
8031
8047
8060
8107
8112
8117
8122
8159
8165
8170
8176
8181
8193
8274
8291
8321
8338
8353
8358
8378
8427
8447
8463
8483
8492
8504
8638
8644
8723
8728
8753
8817
8874
8881
8886
8892
8939
9010
9023
9119
9185
9208
9213
9223
9279
9332
9377
9432
9510
9545
9586
9649
9654
9712

Loading data, please wait...