Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
2
28
47
56
113
120
164
182
212
291
344
355
360
395
424
436
440
446
455
465
510
553
616
648
693
764
769
777
907
920
955
962
968
993
1016
1100
1156
1170
1187
1213
1249
1322
1344
1350
1399
1440
1472
1506
1570
1597
1632
1669
1702
1740
1744
1798
1850
1869
1910
1937
1943
2001
2011
2068
2096
2104
2115
2121
2149
2157
2163
2169
2175
2228
2238
2337
2415
2464
2532
2538
2561
2586
2616
2637
2660
2669
2738
2743
2754
2824
2833
3010
3024
3030
3050
3105
3134
3164
3190
3203
3235
3312
3322
3347
3378
3389
3452
3483
3488
3493
3517
3539
3550
3610
3635
3692
3720
3738
3764
3815
3829
3835
3848
3858
3872
3897
3914
4007
4125
4130
4174
4267
4271
4365
4370
4394
4401
4421
4456
4472
4537
4673
4696
4765
4770
4793
4815
4835
4861
4867
4914
4941
4983
5042
5047
5060
5065
5075
5115
5169
5180
5212
5217
5222
5227
5308
5328
5499
5578
5618
5639
5656
5751
5769
5776
5786
5791
5847
5851
5879
5892
5940
5975
6033
6058
6107
6122
6139
6149
6191
6329
6348
6420
6440
6454
6468
6489
6500
6516
6554
6560
6584
6603
6615
6620
6631
6658
6690
6775
6805
6848
6859
6949
6954
6966
7066
7071
7077
7108
7135
7148
7153
7211
7227
7244
7251
7262
7271
7293
7321
7358
7383
7394
7398
7465
7543
7577
7595
7611
7695
7716
7751
7851
7868
7896
7925
7934
7952
8014
8022
8028
8083
8106
8213
8219
8291
8344
8350
8386
8411
8448
8472
8487
8579
8654
8669
8677
8704
8789
8826
8831
8837
8874
8895
8926
8933
8938
9073
9157
9181
9237
9309
9330
9362
9443
9483
9519
9539
9567
9592
9618
9672
9685
9733
9824
9843
9848
9907
9934
9982

Loading data, please wait...