Synaptic information transfer in computer models of neocortical columns (Neymotin et al. 2010)

 Download zip file 
Help downloading and running models
Accession:136095
"... We sought to measure how the activity of the network alters information flow from inputs to output patterns. Information handling by the network reflected the degree of internal connectivity. ... With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. ... At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing."
Reference:
1 . Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci 30:69-84 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Information transfer;
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; I Na,t; I A; I K;
/
ncdemo
readme.txt
A.mod
AMPA.mod *
AMPAr.mod
clampex.mod *
cp.mod *
cp2.mod *
field.mod
GABAa.mod
GABAar.mod
GABAb.mod
GABAbr.mod
H.mod
Iahp.mod *
Ican.mod *
IL.mod
IL3.mod *
infot.mod *
intf_.mod
intfsw.mod *
kdr2.mod *
kmbg.mod
misc.mod *
naf2.mod *
nap.mod *
NMDA.mod *
NMDAr.mod
nthh.mod *
ntIh.mod *
ntt.mod *
OFThpo.mod
OFThresh.mod
pregencv.mod
stats.mod
updown.mod *
vecst.mod
bg_cvode.inc
misc.h *
mosinit.hoc
netcon.inc *
netrand.inc
ofc.inc
                            
: $Id: pregencv.mod,v 1.5 1998/10/18 19:02:05 billl Exp $
: Id: pregen.mod,v 1.1 1998/07/01 21:11:23 hines Exp 
: comments at end

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON	{ 
  POINT_PROCESS SpikeGenerator
  RANGE x,num
  RANGE fast_invl, slow_invl, burst_len, start, end
  RANGE noise
  GLOBAL dummy : prevent vectorization for use with CVODE
}

PARAMETER {
	fast_invl	= 1		: time between spikes in a burst (msec)
	slow_invl	= 50		: burst period (msec)
: actually, above is interburst period in conformity with original version
: see
	burst_len	= 10		: burst length (# spikes)
	start		= 50		: start of first interburst interval
	end		= 1e10		: time to stop bursting
	noise		= 0		: amount of randomness (0.0 - 1.0)
}

ASSIGNED {
	x
        num
	burst
	event
	burst_off
	burst_on
	toff
	dummy
}

PROCEDURE seed(x) {
	set_seed(x)
}

INITIAL {
  num = 0 : currently not used -- for callback
  toff = 1e9
  x = -90
  burst = 0
  event = start-slow_invl
  event_time()
  while (event < 0) { event_time() }
  generate()
}

BREAKPOINT {
	SOLVE generate METHOD cvode_t
}

FUNCTION interval(mean (ms)) (ms) {
	if (mean <= 0.) {
		mean = .01 : I would worry if it were 0.
	}
	if (noise == 0) {
		interval = mean
	}else{
		interval = (1. - noise)*mean + noise*exprand(mean)
	}
}

PROCEDURE event_time() {
	if (burst != 0.) {
		event = event + interval(fast_invl)
		if (event > burst_on + burst_off) {
			burst = 0.
		}
	}else{
		burst = 1.
: if slow_invl from beginning of burst to beginning of burst
:		event = event + interval(slow_invl - (burst_len-1)*fast_invl)
: use following if slow_invl is interburst interval
		event = event + interval(slow_invl)
		burst_on = event
		burst_off = interval((burst_len - 1)*fast_invl)-1e-6
	}
	if (event > end) {
		event = -1e5
	}
}

PROCEDURE generate() {
	if (at_time(event)) {
          VERBATIM
          {char func[11] = "pregencv_c";
            Symbol* s = hoc_lookup(func);
            if (s) {
              hoc_pushx(num);
              hoc_call_func(s, 1);
          }}
          ENDVERBATIM
            x = 20
            toff = event + .1
            event_time()
	}
	if (at_time(toff)) {
		x = -90
	}
}

COMMENT
Presynaptic spike generator
---------------------------

This mechanism has been written to be able to use synapses in a single
neuron receiving various types of presynaptic trains.  This is a "fake"
presynaptic compartment containing a fast spike generator.  The trains
of spikes can be either periodic or noisy (Poisson-distributed), and 
either tonic or bursting.

Parameters;
   noise: 	between 0 (no noise-periodic) and 1 (fully noisy)
   fast_invl: 	fast interval, mean time between spikes (ms)
   slow_invl:	slow interval, mean burst silent period (ms), 0=tonic train
   burst_len: 	mean burst length (nb. spikes)

Written by Z. Mainen, modified by A. Destexhe, The Salk Institute

Modified by Michael Hines for use with CVode

ENDCOMMENT


Loading data, please wait...