Superior paraolivary nucleus neuron (Kopp-Scheinpflug et al. 2011)

 Download zip file 
Help downloading and running models
Accession:139657
This is a model of neurons in the brainstem superior paraolivary nucleus (SPN), which produce very salient offset firing during sound stimulation. Rebound offset firing is triggered by IPSPs coming from the medial nucleus of the trapezoid body (MNTB). This model shows that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential, combined with a large hyperpolarization- activated non-specific cationic current (IH), with a secondary contribution from a T-type calcium conductance (ITCa). As a result, tiny gaps in sound stimuli of just 3-4ms can elicit reliable APs that signal such brief offsets.
Reference:
1 . Kopp-Scheinpflug C, Tozer AJ, Robinson SW, Tempel BL, Hennig MH, Forsythe ID (2011) The sound of silence: ionic mechanisms encoding sound termination. Neuron 71:911-25 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Superior paraolivary nucleus neuron;
Channel(s): I T low threshold; I h;
Gap Junctions:
Receptor(s): Glycine;
Gene(s): HCN Cnga1;
Transmitter(s): Glycine;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Action Potentials; Rebound firing;
Implementer(s): Hennig, Matthias H [mhhennig at gmail.com];
Search NeuronDB for information about:  Glycine; I T low threshold; I h; Glycine;
/
Kopp-Scheinpflug2011
index.html
readme.txt
ht.mod *
lt.mod *
lva.mod
mhh_Gfluct.mod
netstims.mod *
sjg_ih.mod
sjg_na.mod
trigstim.mod *
allgraphs.hoc
conductance_noise.hoc
current_inj.hoc
mosinit.hoc
run_spn_model.hoc
simcontrols.hoc
spn_neuron.hoc
spnmodel1.png
synapses.hoc
                            
: $Id: netstim.mod,v 1.1.1.1 2001/01/01 20:30:37 hines Exp $
: modified in such a way that the first event will never be before start
: M.Migliore Dec.2001
: modified in such a way to have the first event at start
: M.Migliore Sep. 2003

NEURON	{ 
  POINT_PROCESS NetStims
  RANGE y
  RANGE interval, number, start
  RANGE noise
}

PARAMETER {
	interval	= 10 (ms) <1e-9,1e9>: time between spikes (msec)
	number	= 10 <0,1e9>	: number of spikes
	start		= 50 (ms)	: start of first spike
	noise		= 0 <0,1>	: amount of randomeaness (0.0 - 1.0)
}

ASSIGNED {
	y
	event (ms)
	on
	end (ms)
}

PROCEDURE seed(x) {
	set_seed(x)
}

INITIAL {
	on = 0
	y = 0
	if (noise < 0) {
		noise = 0
	}
	if (noise > 1) {
		noise = 1
	}
	if (start >= 0 && number > 0) {
	: first spike occurs at start
		event = start
		net_send(event, 3)
	}
}	

PROCEDURE init_sequence(t(ms)) {
	if (number > 0) {
		on = 1
		event = t
		end = t + 1e-6 + invl(interval)*(number-1)
	}
}

FUNCTION invl(mean (ms)) (ms) {
	if (mean <= 0.) {
		mean = .01 (ms) : I would worry if it were 0.
	}
	if (noise == 0) {
		invl = mean
	}else{
		invl = (1. - noise)*mean + noise*mean*exprand(1)
	}
}

PROCEDURE event_time() {
	if (number > 0) {
		event = event + invl(interval)
	}
	if (event > end) {
		on = 0
	}
}

NET_RECEIVE (w) {
	if (flag == 0) { : external event
		if (w > 0 && on == 0) { : turn on spike sequence
			init_sequence(t)
			net_send(0, 1)
		}else if (w < 0 && on == 1) { : turn off spiking
			on = 0
		}
	}
	if (flag == 3) { : from INITIAL
		if (on == 0) {
			init_sequence(t)
			net_send(0, 1)
		}
	}
	if (flag == 1 && on == 1) {
		y = 2
		net_event(t)
		event_time()
		if (on == 1) {
			net_send(event - t, 1)
		}
		net_send(.1, 2)
	}
	if (flag == 2) {
		y = 0
	}
}

COMMENT
Presynaptic spike generator
---------------------------

This mechanism has been written to be able to use synapses in a single
neuron receiving various types of presynaptic trains.  This is a "fake"
presynaptic compartment containing a spike generator.  The trains
of spikes can be either periodic or noisy (Poisson-distributed)

Parameters;
   noise: 	between 0 (no noise-periodic) and 1 (fully noisy)
   interval: 	mean time between spikes (ms)
   number: 	mean number of spikes

Written by Z. Mainen, modified by A. Destexhe, The Salk Institute

Modified by Michael Hines for use with CVode
The intrinsic bursting parameters have been removed since
generators can stimulate other generators to create complicated bursting
patterns with independent statistics (see below)

Modified by Michael Hines to use logical event style with NET_RECEIVE
This stimulator can also be triggered by an input event.
If the stimulator is in the on=0 state and receives a positive weight
event, then the stimulator changes to the on=1 state and goes through
its entire spike sequence before changing to the on=0 state. During
that time it ignores any positive weight events. If, in the on=1 state,
the stimulator receives a negative weight event, the stimulator will
change to the off state. In the off state, it will ignore negative weight
events. A change to the on state immediately fires the first spike of
its sequence.

ENDCOMMENT


Loading data, please wait...