ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/143719.

CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)

 Download zip file 
Help downloading and running models
Accession:143719
NEURON files from the paper: On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons by D.Bianchi, A. Marasco, A.Limongiello, C.Marchetti, H.Marie,B.Tirozzi, M.Migliore (2012). J Comput. Neurosci. In press. DOI: 10.1007/s10827-012-0383-y. Experimental findings shown that under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. We analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specic ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to depolarization block.
Reference:
1 . Bianchi D, Marasco A, Limongiello A, Marchetti C, Marie H, Tirozzi B, Migliore M (2012) On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J Comput Neurosci 33:207-25 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I M; I h; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Mathematica;
Model Concept(s): Simplified Models; Depolarization block; Bifurcation;
Implementer(s): Bianchi, Daniela [danielabianchi12 -at- gmail.com]; Limongiello, Alessandro [alessandro.limongiello at unina.it];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; I M; I h; I K,Ca; I_AHP; Gaba; Glutamate;
/
Ca1_Bianchi
experiment
cad.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
d3.mod *
h.mod *
kadist.mod *
kaprox.mod *
kca.mod *
kdr.mod *
km.mod *
na3.mod *
na3dend.mod *
na3notrunk.mod *
nap.mod *
nax.mod *
somacar.mod *
cell-setup.hoc
mosinit.hoc
sessio.ses
Simulation.hoc
                            
TITLE T-calcium channel



UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)

	FARADAY = 96520 (coul)
	R = 8.3134 (joule/degC)
	KTOMV = .0853 (mV/degC)
}



NEURON {
	SUFFIX cat
	USEION ca READ cai,cao 
        USEION Ca WRITE iCa VALENCE 2
        : The T-current does not activate calcium-dependent currents.
        : The construction with dummy ion Ca prevents the updating of the 
        : internal calcium concentration. 
        RANGE gcatbar, hinf, minf, taum, tauh, iCa
}

PARAMETER {
	v (mV)
	
      tBase = 23.5  (degC)
	celsius = 22  (degC)
	gcatbar = 0   (mho/cm2)  : initialized conductance
	ki = 0.001    (mM)
	cai = 5.e-5   (mM)       : initial internal Ca++ concentration
	cao = 2       (mM)       : initial external Ca++ concentration
       tfa = 1                  : activation time constant scaling factor
       : tfi = 0.68 
        tfi = 0.68               : inactivation time constant scaling factor
        eca = 140                : Ca++ reversal potential

}


STATE {
	m h 
}

ASSIGNED {
      iCa (mA/cm2)
      gcat (mho/cm2)
	hinf
	tauh
	minf
	taum
}

INITIAL {
	rates(v)
	m = minf
	h = hinf
     gcat = gcatbar*m*m*h*h2(cai)

}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gcat = gcatbar*m*m*h*h2(cai)
	iCa = gcat*ghk(v,cai,cao)

}

DERIVATIVE states {	: exact when v held constant
	rates(v)
	m' = (minf - m)/taum
	h' = (hinf - h)/tauh
}


UNITSOFF
FUNCTION h2(cai(mM)) {
	h2 = ki/(ki+cai)
}

FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL nu,f

        f = KTF(celsius)/2
        nu = v/f
        ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}

FUNCTION KTF(celsius (DegC)) (mV) {
        KTF = ((25./293.15)*(celsius + 273.15))
}


FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}


FUNCTION alph(v(mV)) {
	TABLE FROM -150 TO 150 WITH 200
	alph = 1.6e-4*exp(-(v+57)/19)
}

FUNCTION beth(v(mV)) {
        TABLE FROM -150 TO 150 WITH 200
	:beth = 1/(exp((-v+15)/10)+1.0)
      beth = 1/(exp((-v+15)/10)+1.0)
}

FUNCTION alpm(v(mV)) {
	TABLE FROM -150 TO 150 WITH 200
	alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0)
}

FUNCTION betm(v(mV)) {
	TABLE FROM -150 TO 150 WITH 200
	betm = 0.046*exp(-v/22.73)
}


PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a
        a = alpm(v)
        taum = 1/(tfa*(a + betm(v))) : estimation of activation tau
        minf =  a/(a+betm(v))        : estimation of activation steady state
        a = alph(v)
        tauh = 1/(tfi*(a + beth(v))) : estimation of inactivation tau
        hinf = a/(a+beth(v))         : estimation of inactivation steady state
        
}

Loading data, please wait...