ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/143719.

CA1 pyramidal neuron: depolarization block (Bianchi et al. 2012)

 Download zip file 
Help downloading and running models
Accession:143719
NEURON files from the paper: On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons by D.Bianchi, A. Marasco, A.Limongiello, C.Marchetti, H.Marie,B.Tirozzi, M.Migliore (2012). J Comput. Neurosci. In press. DOI: 10.1007/s10827-012-0383-y. Experimental findings shown that under sustained input current of increasing strength neurons eventually stop firing, entering a depolarization block. We analyze the spiking dynamics of CA1 pyramidal neuron models using the same set of ionic currents on both an accurate morphological reconstruction and on its reduction to a single-compartment. The results show the specic ion channel properties and kinetics that are needed to reproduce the experimental findings, and how their interplay can drastically modulate the neuronal dynamics and the input current range leading to depolarization block.
Reference:
1 . Bianchi D, Marasco A, Limongiello A, Marchetti C, Marie H, Tirozzi B, Migliore M (2012) On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J Comput Neurosci 33:207-25 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I M; I h; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Mathematica;
Model Concept(s): Simplified Models; Depolarization block; Bifurcation;
Implementer(s): Bianchi, Daniela [danielabianchi12 -at- gmail.com]; Limongiello, Alessandro [alessandro.limongiello at unina.it];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; I M; I h; I K,Ca; I_AHP; Gaba; Glutamate;
/
Ca1_Bianchi
experiment
cad.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
d3.mod *
h.mod *
kadist.mod *
kaprox.mod *
kca.mod *
kdr.mod *
km.mod *
na3.mod *
na3dend.mod *
na3notrunk.mod *
nap.mod *
nax.mod *
somacar.mod *
cell-setup.hoc
mosinit.hoc
sessio.ses
Simulation.hoc
                            
TITLE na3
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997

NEURON {
	SUFFIX nax
	USEION na READ ena WRITE ina
	RANGE  gbar
	GLOBAL minf, hinf, mtau, htau,thinf, qinf
}

PARAMETER {
	gbar = 0.010   	(mho/cm2)	
								
	:tha  =  -30	(mV)		: v 1/2 for act	
       tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.5	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	:thi1  = -45	(mV)		: v 1/2 for inact 	
	:thi2  = -45 	(mV)		: v 1/2 for inact 
      thi1  = -45(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	
	hmin=0.5			
	q10=3
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	

	thinf  = -54	(mV)		: inact inf slope	
	:qinf  = 4 	(mV)		: inact inf slope 
       qinf  =1 	(mV)		: inact inf slope 


	ena		(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(vm) {  
        LOCAL  a, b, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1,Rd,qd)
	b = trap0(-vm,-thi2,Rg,qg)
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf)/qinf))
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}	

        


Loading data, please wait...