Cortical pyramidal neuron, phase response curve (Stiefel et al 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144372
Three models of increasing complexity all showing a switch from type II (biphasic) to type I (monophasic) phase response curves with a cholinergic down-modulation of K+ conductances.
Reference:
1 . Stiefel KM, Gutkin BS, Sejnowski TJ (2009) The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci 26:289-301 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I M;
Gap Junctions:
Receptor(s): Muscarinic;
Gene(s):
Transmitter(s): Acetylcholine;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials;
Implementer(s): Stiefel, Klaus [stiefel at salk.edu];
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; Muscarinic; I Na,p; I Na,t; I M; Acetylcholine;
/
StiefelEtAl2009
README.txt
ca.mod *
cacum.mod
cad.mod *
H.mod
iahp2.mod *
il.mod *
im.mod *
KA.mod
kca.mod *
Kdr.mod
km.mod *
Ks.mod
kv.mod *
Na.mod *
NaP.mod
cell.ses
displayshape.hoc
fig4A.hoc
fig4A_new.hoc
fig5A.hoc
fig5B.hoc
fig5C.hoc
gui.hoc
j8.hoc *
ksprc.ses
makeIF.hoc
multi.hoc
PRC.hoc
PRCsweep.hoc
PY-golomb_original.hoc
PY-golomb_plus.hoc
PY-golomb_simple.hoc
PyMainen.hoc
single.hoc
single_plus.hoc
single1.ses
surface.hoc
synproxy_cch.hoc
synproxy_sweeps.hoc
                            
TITLE Delayed rectifier potassium current

COMMENT Equations from 
   Golomb D, Amitai Y (1997) Propagating neuronal discharges in
   neocortical slices: computational and experimental study. J Neurophys
   78: 1199-1211.

>< Gating kinetics are at 36 degC. 
ENDCOMMENT

NEURON {
        SUFFIX Kdr
        USEION k READ ek WRITE ik
        RANGE g, ik
}

UNITS {
	(S)  = (siemens)
        (mA) = (milliamp)
        (mV) = (millivolt)
}

PARAMETER {
        g	(S/cm2)
}

ASSIGNED {
        v	(mV)
	ek	(mV)
        ik	(mA/cm2)
	ntau	(ms)
	ninf
}

STATE { n }

BREAKPOINT { 
        SOLVE states METHOD cnexp
	ik= g* n^4* (v- ek) 
}

DERIVATIVE states {
	rates()
	n'= (ninf- n)/ ntau
}

INITIAL {
	rates()
	n= ninf 
}

PROCEDURE rates() { UNITSOFF
	ninf= 1/ (1+ exp(-(v+ 30)/ 10))
	ntau= 0.37+ 1.85/ (1+ exp((v+ 27)/ 15))
} UNITSON


Loading data, please wait...