Cortical pyramidal neuron, phase response curve (Stiefel et al 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144372
Three models of increasing complexity all showing a switch from type II (biphasic) to type I (monophasic) phase response curves with a cholinergic down-modulation of K+ conductances.
Reference:
1 . Stiefel KM, Gutkin BS, Sejnowski TJ (2009) The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci 26:289-301 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I M;
Gap Junctions:
Receptor(s): Muscarinic;
Gene(s):
Transmitter(s): Acetylcholine;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials;
Implementer(s): Stiefel, Klaus [stiefel at salk.edu];
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; Muscarinic; I Na,p; I Na,t; I M; Acetylcholine;
/
StiefelEtAl2009
README.txt
ca.mod *
cacum.mod
cad.mod *
H.mod
iahp2.mod *
il.mod *
im.mod *
KA.mod
kca.mod *
Kdr.mod
km.mod *
Ks.mod
kv.mod *
Na.mod *
NaP.mod
cell.ses
displayshape.hoc
fig4A.hoc
fig4A_new.hoc
fig5A.hoc
fig5B.hoc
fig5C.hoc
gui.hoc
j8.hoc *
ksprc.ses
makeIF.hoc
multi.hoc
PRC.hoc
PRCsweep.hoc
PY-golomb_original.hoc
PY-golomb_plus.hoc
PY-golomb_simple.hoc
PyMainen.hoc
single.hoc
single_plus.hoc
single1.ses
surface.hoc
synproxy_cch.hoc
synproxy_sweeps.hoc
                            
TITLE slowly activating potassium current (M-current)

COMMENT
        *********************************************
        reference:   	Yamada, Koch & Adams (1989) 
			Methods in Neuronal Modeling, MIT press
        found in:       bullfrog sympathetic ganglion cells
        *********************************************
	Assembled for MyFirstNEURON by Arthur Houweling
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX iM
	USEION k READ ek WRITE ik 
        RANGE gkbar, m_inf, tau_m, ik
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	v		(mV)
	celsius		(degC)
        dt              (ms)
	ek		(mV)
	gkbar= 0.00031	(mho/cm2)
}

STATE {
	m
}

ASSIGNED {
	ik		(mA/cm2)
	m_inf
	tau_m		(ms)
	tau_h		(ms)
	tadj
}

BREAKPOINT { 
	SOLVE states :METHOD euler
	ik = gkbar * m * (v+105)
}

:DERIVATIVE states {
:       evaluate_fct(v)
:
:       m'= (m_inf-m) / tau_m 
:}
  
PROCEDURE states() {
        evaluate_fct(v)

        m= m + (1-exp(-dt/tau_m))*(m_inf-m)
}

UNITSOFF
INITIAL {
	tadj = 3^((celsius-23.5)/10)
	evaluate_fct(v)
	m = m_inf
}

PROCEDURE evaluate_fct(v(mV)) {  LOCAL a,b
	tau_m = 1000.0/(3.3*(exp((v+35)/20)+exp(-(v+35)/20))) / tadj
	m_inf = 1.0 / (1+exp(-(v+35)/10))
}
UNITSON

Loading data, please wait...