Cortical pyramidal neuron, phase response curve (Stiefel et al 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144372
Three models of increasing complexity all showing a switch from type II (biphasic) to type I (monophasic) phase response curves with a cholinergic down-modulation of K+ conductances.
Reference:
1 . Stiefel KM, Gutkin BS, Sejnowski TJ (2009) The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci 26:289-301 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I M;
Gap Junctions:
Receptor(s): Muscarinic;
Gene(s):
Transmitter(s): Acetylcholine;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials;
Implementer(s): Stiefel, Klaus [stiefel at salk.edu];
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; Muscarinic; I Na,p; I Na,t; I M; Acetylcholine;
/
StiefelEtAl2009
README.txt
ca.mod *
cacum.mod
cad.mod *
H.mod
iahp2.mod *
il.mod *
im.mod *
KA.mod
kca.mod *
Kdr.mod
km.mod *
Ks.mod
kv.mod *
Na.mod *
NaP.mod
cell.ses
displayshape.hoc
fig4A.hoc
fig4A_new.hoc
fig5A.hoc
fig5B.hoc
fig5C.hoc
gui.hoc
j8.hoc *
ksprc.ses
makeIF.hoc
multi.hoc
PRC.hoc
PRCsweep.hoc
PY-golomb_original.hoc
PY-golomb_plus.hoc
PY-golomb_simple.hoc
PyMainen.hoc
single.hoc
single_plus.hoc
single1.ses
surface.hoc
synproxy_cch.hoc
synproxy_sweeps.hoc
                            
TITLE high threshold calcium current (L-current)

COMMENT
        *********************************************
        reference:      McCormick & Huguenard (1992) 
			J.Neurophysiology 68(4), 1384-1400
        found in:       hippocampal pyramidal cells
        *********************************************
	Assembled for MyFirstNEURON by Arthur Houweling
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX iL
	USEION ca READ cai,cao WRITE ica
        RANGE pcabar, m_inf, tau_m, ica
}

UNITS {
	(mA)	= (milliamp)
	(mV)	= (millivolt)
	(mM)	= (milli/liter)
        FARADAY = 96480 (coul)
        R       = 8.314 (volt-coul/degC)
}

PARAMETER {
	v			(mV)
	celsius			(degC)
        dt              	(ms)
	cai			(mM)
	cao			(mM)
	pcabar= 0.000276	(cm/s)		
}

STATE {
	m
}

ASSIGNED {
	ica		(mA/cm2)
	tau_m		(ms)
	m_inf 
	tadj
}

BREAKPOINT { 
	SOLVE states :METHOD euler
	ica = pcabar * m*m * ghk(v,cai,cao,2)
}

:DERIVATIVE states {
:       rates(v)
:
:       m'= (m_inf-m) / tau_m 
:}
  
PROCEDURE states() {
        rates(v)

        m= m + (1-exp(-dt/tau_m))*(m_inf-m)
}

UNITSOFF
INITIAL {
	tadj = 3^((celsius-23.5)/10)
	rates(v)
	m = m_inf
}

FUNCTION ghk( v(mV), ci(mM), co(mM), z)  (millicoul/cm3) {
        LOCAL e, w
        w = v * (.001) * z*FARADAY / (R*(celsius+273.16))
        if (fabs(w)>1e-4) 
          { e = w / (exp(w)-1) }
        else
	: denominator is small -> Taylor series
          { e = 1-w/2 }
        ghk = - (.001) * z*FARADAY * (co-ci*exp(w)) * e
}
UNITSOFF

PROCEDURE rates(v(mV)) { LOCAL a,b
	a = 1.6 / (1+ exp(-0.072*(v-5)))
	b = 0.02 * vtrap( -(v-1.31), 5.36)

	tau_m = 1/(a+b) / tadj
	m_inf = 1/(1+exp((v+10)/-10))
}

FUNCTION vtrap(x,c) { 
	: Traps for 0 in denominator of rate equations
        if (fabs(x/c) < 1e-6) {
          vtrap = c + x/2 }
        else {
          vtrap = x / (1-exp(-x/c)) }
}
UNITSON



Loading data, please wait...