Nonlinear dendritic processing in barrel cortex spiny stellate neurons (Lavzin et al. 2012)

 Download zip file 
Help downloading and running models
Accession:146565
This is a multi-compartmental simulation of a spiny stellate neuron which is stimulated by a thalamocortical (TC) and cortico-cortical (CC) inputs. No other cells are explicitly modeled; the presynaptic network activation is represented by the number of active synapses. Preferred and non –preferred thalamic directions thus correspond to larder/smaller number of TC synapses. This simulation revealed that randomly activated synapses can cooperatively trigger global NMDA spikes, which involve participation of most of the dendritic tree. Surprisingly, we found that although the voltage profile of the cell was uniform, the calcium influx was restricted to ‘hot spots’ which correspond to synaptic clusters or large conductance synapses
Reference:
1 . Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J (2012) Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature 490:397-401 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex spiny stellate cell;
Channel(s): I Sodium; I Potassium; Ca pump;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models; Synaptic Integration; Calcium dynamics; Direction Selectivity; Whisking;
Implementer(s): Polsky, Alon [alonpol at tx.technion.ac.il];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Sodium; I Potassium; Ca pump; Gaba; Glutamate;
TITLE HH channel
: Mel-modified Hodgkin - Huxley conductances (after Ojvind et al.)

VERBATIM
static const char rcsid[]="$Id: hh3.mod,v 1.1 1996/05/19 19:26:28 karchie Exp $";
ENDVERBATIM

NEURON {
	SUFFIX hh3
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	NONSPECIFIC_CURRENT il
	RANGE gnabar, gkbar, gl, el,gkbar2,vshift
	GLOBAL taus,taun,taum,tauh,tausb,taun2
	GLOBAL tausv,tausd,mN,nN,sN
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	v (mV)
	celsius = 37	(degC)
	dt (ms)
	gnabar=.20 (mho/cm2)
	gkbar=.12 (mho/cm2)
	gkbar2=.12 (mho/cm2)
	gl=.0001 (mho/cm2)
	ena = 40 (mV)
	ek = -80 (mV)
	el = -70.0 (mV)	: steady state at v = -65 mV
	taum=0.05
	tauh=0.5
	taus=50
	tausv=30
	tausd=1
	taun=1
	taun2	=10
	mN=3
	nN=3
	sN=1
	tausb=0.5
	vshift=0
}
STATE {
	m h n s n2
}
ASSIGNED {
	ina (mA/cm2)
	ik (mA/cm2)
	il (mA/cm2)

}

BREAKPOINT {
	SOLVE states

	ina = gnabar*h*s^sN*(v - ena)*m^mN
	ik = gkbar*(v - ek)*n^nN+gkbar2*(v - ek)*n2^nN


	il = gl*(v - el)
}

PROCEDURE states() {	: exact when v held constant
	LOCAL sigmas
	sigmas=1/(1+exp((v+tausv+vshift)/tausd))
	m = m + (1 - exp(-dt/taum))*(1 / (1 + exp((v + 40+vshift)/(-3)))  - m)
	h = h + (1 - exp(-dt/tauh))*(1 / (1 + exp((v + 45+vshift)/3))  - h)
	s = s + (1 - exp(-dt/(taus*sigmas+tausb)))*(1 / (1 + exp((v + 44+vshift)/3))  - s)
	n = n + (1 - exp(-dt/taun))*(1 / (1 + exp((v + 40+vshift)/(-3)))  - n)
	n2 = n2 + (1 - exp(-dt/taun2))*(1 / (1 + exp((v + 40+vshift)/(-3)))  - n2)
	VERBATIM
	return 0;
	ENDVERBATIM
}


Loading data, please wait...