ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/147460.

Direct recruitment of S1 pyramidal cells and interneurons via ICMS (Overstreet et al., 2013)

 Download zip file 
Help downloading and running models
Accession:147460
Study of the pyramidal cells and interneurons recruited by intracortical microstimulation in primary somatosensory cortex. Code includes morphological models for seven types of pyramidal cells and eight types of interneurons, NEURON code to simulate ICMS, and an artificial reconstruction of a 3D slab of cortex implemented in MATLAB.
Reference:
1 . Overstreet CK, Klein JD, Helms Tillery SI (2013) Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex. J Neural Eng 10:066016 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Axon;
Brain Region(s)/Organism:
Cell Type(s): Neocortex U1 L6 pyramidal corticalthalamic GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex bitufted interneuron;
Channel(s): I Na,p; I_Ks;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Intracortical Microstimulation;
Implementer(s): Overstreet, Cynthia [cynthiakoverstreet at gmail.com];
Search NeuronDB for information about:  Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex U1 L6 pyramidal corticalthalamic GLU cell; I Na,p; I_Ks;
/
OverstreetEtAl2013
Interneuron
NEURON_code
README.txt
AXNODE.mod *
xtra.mod *
anat_type1.hoc
anat_type2.hoc
anat_type3.hoc
anat_type4.hoc
anat_type5.hoc
anat_type6.hoc
anat_type7.hoc
anat_type8.hoc
calcrxc.hoc *
field.hoc *
fixnseg.hoc *
initxcstim.hoc
interpxyz.hoc *
moveandstimtype1.hoc
moveandstimtype2.hoc
moveandstimtype3.hoc
moveandstimtype4.hoc
moveandstimtype5.hoc
moveandstimtype6.hoc
moveandstimtype7.hoc
moveandstimtype8.hoc
rigc.ses *
setpointers.hoc *
stim.hoc *
stimbipolar.hoc *
vrecc.ses
                            
/*
CK Overstreet
Last Updated 12/18/2012
Major characteristics of cell bodies and axons reconstructed by hand from:
E. G. Jones, “Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey,” The Journal of Comparative Neurology, vol. 160, no. 2, pp. 205-267, Mar. 1975.

*/

load_file("nrngui.hoc")

NAPICAL=14
NBOUTON=6

create soma, ap[NAPICAL], bt[NBOUTON]

access soma

connect ap[0](0), soma(0)
connect ap[1](0), ap[0](1)
connect ap[2](0), ap[1](1)
connect ap[3](0), ap[1](1)
connect ap[4](0), ap[3](1)
connect ap[5](0), ap[4](1)
connect ap[6](0), ap[5](1)
connect ap[7](0), ap[5](1)
connect ap[8](0), ap[7](1)
connect ap[9](0), ap[3](1)
connect ap[10](0), ap[9](1)
connect ap[11](0), ap[9](1)
connect ap[12](0), ap[11](1)
connect ap[13](0), ap[11](1)

connect bt[0](0), ap[2](1)
connect bt[1](0), ap[6](1)
connect bt[2](0), ap[8](1)
connect bt[3](0), ap[10](1)
connect bt[4](0), ap[12](1)
connect bt[5](0), ap[13](1)


forall pt3dclear()


soma {
	pt3dadd(20, 0, 0, 10)
	pt3dadd(-20, 0, 0, 10)
	insert axnode
	insert extracellular
	insert xtra
	xraxial=1e+09 
	xg=1e+09 
	xc=0 
	e_extracellular=0
}

for i = 0, NAPICAL-1 ap[i] { 
	insert axnode
	insert extracellular 
	insert xtra
	xraxial=1e+09 
	xg=1e+09 
	xc=0 
	e_extracellular=0
} 

for i = 0, NBOUTON-1 bt[i] { 
	insert axnode
	insert extracellular 
	insert xtra
	xraxial=1e+09 
	xg=1e+09 
	xc=0 
	e_extracellular=0
}

ap[0] {
	pt3dadd(0, 0, 0, 5)
	pt3dadd(10, -15, 0, 5)
}
ap[1] {
	pt3dadd(10, -15, 0, 5)
	pt3dadd(0, -20, 0, 3)
}
ap[2] {
	pt3dadd(0, -20, 0, 1)
	pt3dadd(-5, -10, 0, 1)
}
ap[3] {
	pt3dadd(0, -20, 0, 3)
	pt3dadd(-20, -40, 0, 2)
}
ap[4] {
	pt3dadd(-20, -40, 0, 1)
	pt3dadd(-25, -35, 0, 1)
}
ap[5] {
	pt3dadd(-25, -35, 0, 1)
	pt3dadd(-40, -45, 0, 1)
}
ap[6] {
	pt3dadd(-40, -45, 0, 1)
	pt3dadd(-90, -35, 0, 1)
}
ap[7] {
	pt3dadd(-40, -45, 0, 1)
	pt3dadd(-50, -55, 0, 1)
}
ap[8] {
	pt3dadd(-50, -55, 0, 1)
	pt3dadd(50, -75, 0, 1)
}
ap[9] {
	pt3dadd(-20, -40, 0, 2)
	pt3dadd(-35, -90, 0, 1)
}
ap[10] {
	pt3dadd(-35, -90, 0, 1)
	pt3dadd(40, -100, 0, 1)
}
ap[11] {
	pt3dadd(-35, -90, 0, 1)
	pt3dadd(-60, -120, 0, 1)
}
ap[12] {
	pt3dadd(-60, -120, 0, 1)
	pt3dadd(-100, -115, 0, 1)
}
ap[13] {
	pt3dadd(-60, -120, 0, 1)
	pt3dadd(-85, -145, 0, 1)
}


bt[0] {
	pt3dadd(-5, -10, 0, 1)
	pt3dadd(-7.2, -5.5, 0, 4)
}
bt[1] {
	pt3dadd(-90, -35, 0, 1)
	pt3dadd(-94.9, -34, 0, 4)
}
bt[2] {
	pt3dadd(50, -75, 0, 1)
	pt3dadd(54.9, -75, 0, 4)
}
bt[3] {
	pt3dadd(40, -100, 0, 1)
	pt3dadd(45, -100.7,  0, 4)
}
bt[4] {
	pt3dadd(-100, -115, 0, 1)
	pt3dadd(-105, -114.4, 0, 4)
}
bt[5] {
	pt3dadd(-85, -145, 0, 1)
	pt3dadd(-88.5, -148.5, 0, 4)
}

XORIGIN = 0
YORIGIN = 0
ZORIGIN = 0

access soma
pt3dchange(0, x3d(0)+XORIGIN, y3d(0)+YORIGIN, z3d(0)+ZORIGIN, diam3d(0))
pt3dchange(1, x3d(1)+XORIGIN, y3d(1)+YORIGIN, z3d(1)+ZORIGIN, diam3d(1))
nseg=20

for(i=0; i<=NAPICAL-1; i=i+1){
	access ap[i]
	pt3dchange(0, x3d(0)+XORIGIN, y3d(0)+YORIGIN, z3d(0)+ZORIGIN, diam3d(0))
	pt3dchange(1, x3d(1)+XORIGIN, y3d(1)+YORIGIN, z3d(1)+ZORIGIN, diam3d(1))
	nseg=27
}

for(i=0; i<=NBOUTON-1; i=i+1){
	access bt[i]
	pt3dchange(0, x3d(0)+XORIGIN, y3d(0)+YORIGIN, z3d(0)+ZORIGIN, diam3d(0))
	pt3dchange(1, x3d(1)+XORIGIN, y3d(1)+YORIGIN, z3d(1)+ZORIGIN, diam3d(1))
	nseg=5
}

forall Ra=70
access ap[0]

Loading data, please wait...