ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/149739.

A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013)

 Download zip file 
Help downloading and running models
Accession:149739
This is a two-layer biophysical olfactory bulb (OB) network model to study cholinergic neuromodulation. Simulations show that nicotinic receptor activation sharpens mitral cell receptive field, while muscarinic receptor activation enhances network synchrony and gamma oscillations. This general model suggests that the roles of nicotinic and muscarinic receptors in OB are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations.
Reference:
1 . Li G, Cleland TA (2013) A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. J Neurosci 33:3037-58 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,p; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I_Ks; I Cl, leak; I Ca,p;
Gap Junctions:
Receptor(s): Nicotinic; GabaA; Muscarinic; AMPA; NMDA;
Gene(s):
Transmitter(s): Acetylcholine;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Sensory processing; Sensory coding; Neuromodulation; Olfaction;
Implementer(s): Li, Guoshi [guoshi_li at med.unc.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; Nicotinic; GabaA; Muscarinic; AMPA; NMDA; I Na,p; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I_Ks; I Cl, leak; I Ca,p; Acetylcholine;
/
ACh_ModelDB
data
Input
Readme.txt
cadecay.mod *
cadecay2.mod *
Caint.mod *
Can.mod *
CaPN.mod *
CaT.mod *
GradeAMPA.mod *
GradeGABA.mod *
GradNMDA.mod *
hpg.mod *
kAmt.mod *
KCa.mod *
KDRmt.mod *
kfasttab.mod *
kM.mod *
KS.mod *
kslowtab.mod *
LCa.mod *
nafast.mod *
NaP.mod *
Naxn.mod *
Nicotin.mod *
nmdanet.mod *
OdorInput.mod *
Background.hoc
Connect.hoc
GC_def.hoc
GC_save.hoc *
GC_Stim.hoc
Input.hoc
MC_def.hoc
MC_save.hoc
MC_Stim.hoc
mod_func.c
mosinit.hoc
nrniv.exe.stackdump
OB.hoc
Parameter.hoc
PG_def.hoc
PG_save.hoc *
PG_Stim.hoc
SaveData.hoc
tabchannels.dat *
tabchannels.hoc
                            
TITLE Calcium dependent potassium channel
: Implemented in Rubin and Cleland, J. Neurophysiol 2006
: KCa channel with parameters from US Bhalla and JM Bower,
: J. Neurophysiol. 69:1948-1983 (1993)
: Adapted from /usr/local/neuron/demo/release/nachan.mod - squid
: by Andrew Davison, The Babraham Institute.
: 24-08-98

: Modified by GL !!!

NEURON {
	SUFFIX Ikca
	USEION k READ ek WRITE ik
	USEION ca READ cai
	RANGE gkbar, ik, Yconcdep, Yvdep
	GLOBAL Yalpha, Ybeta
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	v (mV)
	dt (ms)
	gkbar= 0.120 (mho/cm2) <0,1e9>
	ek = -80 (mV)
	Ybeta = 0.05 (/ms)
	cai (mM) := 1e-5 (mM)
}


STATE {
	Y
}

ASSIGNED {
	ik (mA/cm2)
	Yalpha   (/ms)
	Yvdep    
	Yconcdep (/ms)
}

INITIAL {
	rate(v,cai)
	Y = Yalpha/(Yalpha + Ybeta)
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	ik = gkbar*Y*(v - ek)
}

DERIVATIVE state {
	rate(v,cai)
	Y' = Yalpha*(1-Y) - Ybeta*Y
}

PROCEDURE rate(v(mV),cai(mM)) {
	vdep(v)
	concdep(cai)
	Yalpha = Yvdep*Yconcdep
}

PROCEDURE vdep(v(mV)) {
	TABLE Yvdep FROM -100 TO 100 WITH 100
	Yvdep = exp((v*1(/mV)-65)/27) : exp((v*1(/mV)+70)/27)
}

PROCEDURE concdep(cai(mM)) {
	TABLE Yconcdep FROM 0 TO 50 WITH 2000
	if ( fabs(cai-0.015) < 1e-5) {
		
		Yconcdep = 500(/ms)/(1/0.0013 + 0.5*(0.015-cai)/0.0013^2 )
		:Yconcdep = 500(/ms)*( 0.015-cai*1(/mM) )/( exp((0.015-cai*1(/mM))/0.0013) -1 )
	} else {
		Yconcdep = 500(/ms)*( 0.015-cai*1(/mM) )/( exp((0.015-cai*1(/mM))/0.0013) -1 )
		:Yconcdep = 500(/ms)*0.005/( exp(0.005/0.0013) -1 )
	}
}

Loading data, please wait...