Sensorimotor cortex reinforcement learning of 2-joint virtual arm reaching (Neymotin et al. 2013)

 Download zip file 
Help downloading and running models
Accession:150245
"... We developed a model of sensory and motor neocortex consisting of 704 spiking model-neurons. Sensory and motor populations included excitatory cells and two types of interneurons. Neurons were interconnected with AMPA/NMDA, and GABAA synapses. We trained our model using spike-timing-dependent reinforcement learning to control a 2-joint virtual arm to reach to a fixed target. ... "
Reference:
1 . Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW (2013) Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortex. Neural Comput 25:3263-93 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity; Learning; Reinforcement Learning; STDP; Reward-modulated STDP; Sensory processing;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; Chadderdon, George [gchadder3 at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
a2dmodeldb
readme.html
drspk.mod *
infot.mod *
intf6_.mod *
misc.mod *
nstim.mod *
stats.mod *
vecst.mod *
arm.hoc
basestdp.hoc
col.hoc
colors.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc *
geom.hoc
grvec.hoc *
hinton.hoc *
infot.hoc *
init.hoc
labels.hoc *
misc.h *
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
python.hoc
pywrap.hoc *
run.hoc
samutils.hoc *
screenshot.png
sense.hoc *
setup.hoc *
simctrl.hoc *
stats.hoc *
stim.hoc
syncode.hoc *
trainedplast.nqs
units.hoc *
xgetargs.hoc *
                            
// $Id: geom.hoc,v 1.9 2012/05/22 15:10:53 samn Exp $

declare("armLen","d[2]") // length of each arm segment -- fixed throughout sim
declare("MLen","d[4]") // length of each muscle -- varies throughout sim
declare("MFctr",1)
declare("minDPr",0,"maxDPr",1)

begintemplate DPC

public soma,drspk,id,type,subtype,xloc,yloc,zloc,mlenmin,mlenmax
public setmlenrange,updatedrive
external armLen,MLen,MFctr,minDPr,maxDPr
objref drspk
double id[1],type[1],subtype[1],xloc[1],yloc[1],zloc[1],mlenmin[1],mlenmax[1]

create soma[1]

proc init () {
  if(numarg()>0) id=$1
  if(numarg()>1) type=$2
  initsoma()
}

proc initsoma () {
  soma {
    diam = 30
    L = 30
    nseg = 1
    Ra = 1
    drspk = new DRSPK(0.5)
    insert pas    
    e_pas = 0
  }
}

proc setmlenrange () {
  mlenmin = $1
  mlenmax = $2
}

proc updatedrive () { local mlen
  // The first argument is the relevant muscle length.  If none is provided,
  // the default is the current muscle length.
  if (numarg() > 0) mlen = $1 else mlen = MLen[zloc] 

  // Set the drive between minDPr and maxDPr where muscle length divided by the
  // arm length for the corresponding arm segment sets distance from the 
  // minDPr baseline firing rate.
  // drspk.drive = minDPr + (maxDPr-minDPr) * MFctr * MLen[zloc] / armLen[zloc/2]

  // If the muscle length associated with the cell is within the range,
  // then set maximal drive, else set minimal drive.
  if ((mlen >= mlenmin) && (mlen <= mlenmax)) {
    drspk.drive = maxDPr
  } else {
    drspk.drive = minDPr
  }
}

endtemplate DPC

Loading data, please wait...