DBS of a multi-compartment model of subthalamic nucleus projection neurons (Miocinovic et al. 2006)

 Download zip file 
Help downloading and running models
Accession:151460
We built a comprehensive computational model of subthalamic nucleus (STN) deep brain stimulation (DBS) in parkinsonian macaques to study the effects of stimulation in a controlled environment. The model consisted of three fundamental components: 1) a three-dimensional (3D) anatomical model of the macaque basal ganglia, 2) a finite element model of the DBS electrode and electric field transmitted to the tissue medium, and 3) multicompartment biophysical models of STN projection neurons, GPi fibers of passage, and internal capsule fibers of passage. Populations of neurons were positioned within the 3D anatomical model. Neurons were stimulated with electrode positions and stimulation parameters defined as clinically effective in two parkinsonian monkeys. The model predicted axonal activation of STN neurons and GPi fibers during STN DBS. Model predictions regarding the degree of GPi fiber activation matched well with experimental recordings in both monkeys.
Reference:
1 . Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, McIntyre CC (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:1569-80 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Subthalamus nucleus projection neuron;
Channel(s): I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Na, leak;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s): Gaba;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Action Potentials; Parkinson's; Deep brain stimulation;
Implementer(s): McIntyre, Cameron C. [ccm4 at case.edu]; Hahn, Philip [hahnp at ccf.org]; Miocinovic, Svjetlana [svjetlana.miocinovic at utsouthwestern.edu]; Butson, Chris [cbutson at mcw.edu];
Search NeuronDB for information about:  GabaA; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Na, leak; Gaba;
/
MiocinovicEtAl2006
fem_fourier_waveform
fem_voltage
README.html
ampa.mod
AXNODE75.mod
Cacum.mod
CaT.mod
gabaa.mod
HVA.mod
Ih.mod
KDR.mod
Kv31.mod
myions.mod *
Na.mod
NaL.mod
PARAK75.mod
sKCa.mod
STh.mod
train.mod
ghk.inc
hocload.tmp
init.hoc
main.hoc
mosinit.hoc *
n17_full9_fem_type1RD_Gillies.hoc
n17_full9_fem_type3RD_Gillies.hoc
n17_full9_fem_type4RD_Gillies.hoc
run.sh
screenshot.png
small_run.hoc
STN.hoc
STN_dbs_fem_syn.ses
                            
// small_run.hoc derived from authors code main.hoc
load_file("n17_full9_fem_type1RD_Gillies.hoc") // Geometry #1
//load_file("n17_full9_fem_type3RD_Gillies.hoc") // Geometry #3
//load_file("n17_full9_fem_type4RD_Gillies.hoc") // Geometry #4
strdef waveform_filename  //stimulus waveform made with capacitive Femlab model and fourier_waveform.m
strdef voltage_filename  //voltage file (voltages for each cell and each compartment) made with dbs_pop_coord2.m
strdef output_file1 , output_file2

waveform_filename = "fem_fourier_waveform/ffw_reconstr_bipo2_encap250_136Hz_210us.txt"
voltage_filename = "fem_voltage/STNtype4_bipo2_encap250_elecH1new.txt"
output_file1  = "STNtype4_bipo2_elecH1new_FFT_Encap250_gaba0_1p8V_somaSMALL.dat"
output_file2  = "STNtype4_bipo2_elecH1new_FFT_Encap250_gaba0_1p8V_somaSMALL.log"

//Extracellular stimulation parameters
Vamp = 30 //[V] extracell. stimulation voltage
pw=0.21   //ms    //LOAD CORRECT FOURIER-DERIVED WAVEFORM

//Extracellular stimulation parameters
delay=10 // shortened from 100 for demo
num_test_pulses = 2// shorted from 25 for demo
polarity = 1 //-1 for cathodic, +1 for anodic , set to 1 for bipolar stimuli
freq=136  //Hz //LOAD CORRECT FOURIER-DERIVED WAVEFORM ; dont change later because extra_stim depends on it
dur = num_test_pulses*1000/freq  //we want num_test_pulses current pulses
ratio = 10      // for Asymmetric and pseudomonophasic : pre-pulse or post-pulse has amplitude amp/ratio, duration pw*ratio (and polarity -1*polarity)

//Simulation parameters
dt=0.01    //ms//   //CAN'T CHANGE BECAUSE extra_stim depends on it
tstop = delay+dur+100  //don't change it later because extra_stim size depends on it.
steps_per_ms=20 //100


//create synapse and set parameters
synstim=0 //2 	//[nA] amplitude for syntrainGABA and syntrainGLU trainIClamp -> DO NOT DEPEND ON ELECTRODE PARAMS
synpw= 1	 	//[ms] pulse width for syntrainGABA and syntrainGLU trainIClamp -> DO NOT DEPEND ON ELECTRODE PARAMS
GABAsynAg= 0.011 //[uS]

//---------------------------------------------------------------------------------------

objref GABAsynA, syntrainGABA
create GABApre

GABApre {
	nseg=1
	L=1
	d=1
	Ra=100
	cm=1
	insert pas
		g_pas=0.001
		e_pas=-65
}

max_pop = 60 // max number of cells in population
objref V_raw, Ve, V
V_raw=new Vector(total*max_pop,0)  //total is number of compartments (comes from geometry file)
Ve=new Vector(total,0)
V=new Vector(total,0)

//variables for calculating average instantaneous firing freq, average interspike period and average freq (#spikes/recording_time)
//at the end of axon, and in soma
avg_inst_freq = 0
std_inst_freq = 0
avg_period = 0
std_period = 0
avg_freq = 0
avg_inst_freq_soma = 0
std_inst_freq_soma = 0
avg_period_soma = 0
std_period_soma = 0
avg_freq_soma = 0
objref order_freq
order_freq = new Vector (dur, 0)   //instantaneous firing rate for each spike


//initcell() //sets up mechanisms in the cell...from morphology file
//------------------------------------------------------------------------
// set up xyz scale bars

create xScale, yScale, zScale

proc anatscale() {
	if ($4>0) {  // if length arg is <= 0 then do nothing
		xScale {
			pt3dclear()
			pt3dadd($1, $2, $3, 1)
			pt3dadd($1+$4, $2, $3, 1)
		}
		yScale {
			pt3dclear()
			pt3dadd($1, $2, $3, 1)
			pt3dadd($1, $2+$4, $3, 1)
		}
		zScale {
			pt3dclear()
			pt3dadd($1, $2, $3, 1)
			pt3dadd($1, $2, $3+$4, 1)
		}
	}
}

anatscale(0,0,0,100)  // origin xyz and length

//-----------------------------------------------------------------------------
//Set up extracellular stimulus
objref exIClmp
exIClmp = new IClamp()  //extracellular stimulus//  FOURIER-DERIVED WAVEFORM  //this line must not be inside stimul()
proc stimulus(){

	Vstim = Vamp * polarity
	electrode {  //electrode is created in morphology file
		//exIClmp.PW=pw
        //exIClmp.train=dur
		//exIClmp.freq=freq
		exIClmp.loc(0.5)
		exIClmp.del=0         //will use vectorplay
		exIClmp.dur = 1000000  //will use vectorplay
		exIClmp.amp=0 //will use vectorplay to determine stimulus amplitude at any time point
	}

	for i=0,total-1 {
		Ve.x[i]=Vstim*V.x[i]*1e3	//mV
	}

	//synapse setup
	GABApre { //pre-synaptic terminal (created in morphology file)
		syntrainGABA = new trainIClamp()
		syntrainGABA.loc(0.5)
		syntrainGABA.del=delay
		syntrainGABA.PW=synpw
		syntrainGABA.train=dur
		syntrainGABA.freq=freq
		syntrainGABA.amp=synstim
	}
	soma[1] { //soma is stimulated (inhibited) by GABAa synaptic current
		GABAsynA=new GABAa()
		GABAsynA.loc(.5)
		setpointer GABAsynA.pre, GABApre.v(0.5)
		GABAsynA.gmax=GABAsynAg
	}


}
stimulus()

//----------------------------------------------------------------------
//describes custom wavefrom for extracellular stimulus (fourier-derived waveform in this case)
objref extra_stim
time_step = int(tstop/dt) + 1
extra_stim = new Vector(time_step,-1)  //RESIZE IF CHANGING TSTOP LATER
//load one cycle of fourier-derived waveform shape (normalized to 1V; dt=0.01); loads vector fdw
objref fdw
cycle_size = int(1000/(freq*dt)) + 1
fdw = new Vector(cycle_size,0)
xopen(waveform_filename)

//calculate extra_stim values for each time-step. These values will then be fed to exIClmp.amp
proc calc_extra_stim(){local tmp_del, tmp_dur, my_time, i, j

    my_time = 0

    if (freq == 0 || dur == 0 || Vamp == 0) {  //no stimulation
        for i = 0, time_step-1 {
            extra_stim.x[i] = 0
        }
    } else {
          i = 0
          while(my_time < delay && i < extra_stim.size()) {  //before stimulus train
               extra_stim.x[i] = 0
               i = i+1
	       my_time = my_time + dt
          }
          while (my_time < delay+dur && i < extra_stim.size()) {   //during stimulus train
		  for j = 0, cycle_size-1 {
                 	 extra_stim.x[i] = fdw.x[j]   //extra_stim has no units
                 	 i = i+1
                 	 my_time = my_time + dt
		  }
          }
	  while (i < extra_stim.size()) {     //after stimulus train
                  extra_stim.x[i] = 0
                  i = i+1
                  my_time = my_time + dt
          }
     }

}
calc_extra_stim()

//--------------------------------------------------------------------------
//action potential counter

objref apc, apc_times, apc_soma, apc_times_soma
proc setup_AP_count(){

	AP_ct_node = -1
	node[axonnodes-2] apc = new APCount(0.2)
	AP_ct_node = axonnodes-2
	apc_times = new Vector()
	apc.thresh = -20 //mV
	apc.record(apc_times)

	soma[1] apc_soma = new APCount(0.2)
	apc_times_soma = new Vector()
	apc_soma.thresh = -20 //mV
	apc_soma.record(apc_times_soma)
}
setup_AP_count()


//set up AP counters in every node and soma
objectvar AP_counters[axonnodes+1]  //AP counter at every node and soma
objectvar AP_timerec[axonnodes+1]   //records AP time at every node and soma
for i =0, axonnodes{
    AP_timerec[i] = new Vector()
}


proc setup_APc_all(){
	num_ap_counters = axonnodes + 1
	for i = 0,num_ap_counters-2 {
		node[i] AP_counters[i] = new APCount(.5)   //put AP counter in every node
		AP_counters[i].record(AP_timerec[i])       //records times of APs
	}
	soma[1] AP_counters[num_ap_counters-1] = new APCount(.5)  //put AP counter in soma //MULTICOMPARTMENT SOMA
	AP_counters[num_ap_counters-1].record(AP_timerec[num_ap_counters-1])
}
setup_APc_all()

//------------------------------------------------------------------------------
//threshold seeking functions

objref extra_APs, required_APs
required_APs = new Vector(200,0) //times of current stimulus pulses
num_req_APs = 0 //number of APs expected in response to stimulus pulses (ie size of required_APs vector)
extra_APs = new Vector(200,0)  //times of APs during stimulation that are not caused by stimulus pulses
num_extra = 0 //size of extra_APs vector
cyc = 0 //number of stimulation pulses
epsilon = 0.1 //was 0.01 //was 0.001 //allowed error when looking for threshold
AP_delay = 4 //ms// //time allowed between stimulus pulse initiation and AP at the AP_counter so that
                //AP is considered to be caused by stimulus itself
num_req = 0 //number of required APs that happened
soma_orig_ap = 0 //number of APs that originated in soma but counted as stimulus related NOT ACCURATE
soma_orig_ap2 = 0 //number of APs that originated in soma but counted as extra APs NOT ACCURATE
num_soma_ap = 0 //number of APs in soma during stim

//calculate times of current stimulus pulses (starting time), and store them in Vector required_APs
//APs should follow after a certain time whose maximum is AP_delay
proc calculate_required_APs() {  local i
    num_req_APs = 0
    if (freq == 1) {
	cyc = 1
    } else {
         if (dur > tstop) {
                  cyc = int((tstop-delay)*freq/1000)
         } else {
                  cyc = int(dur*freq/1000)
         }
     }

     for i = 0, cyc-1 {
              required_APs.x[num_req_APs] = delay+i*1000/freq
              num_req_APs = num_req_APs +1
     }

     if (num_req_APs != num_test_pulses) {
		print "Freq = ", freq, "...Number of required APs is not", num_test_pulses, "!!, but ", num_req_APs
     }
}


//function checks if cell responds to all stimulus pulses (but it may overestimate # spike responses )
//and records any extra APs to a vector extra_APs
func response_to_stimulus(){  local i, j, flag, flag2

     num_req = 0
     num_extra = 0
     flag = 0
     flag2 = 0
     soma_orig_ap= 0
     soma_orig_ap2= 0

     for i = 0, apc.n-1 {
         if ((apc_times.x[i] > delay) && (apc_times.x[i] <= delay+dur+AP_delay)) { //AP_delay added if there are any APs that are responding to stimulus pulse at the very end of pulse duration
                  flag = 0
                  for j = flag2, num_req_APs-1 {
                       if ((apc_times.x[i] > required_APs.x[j]) && (apc_times.x[i] <= required_APs.x[j]+AP_delay)) {
  			      if (soma_ap(i)==1){
                                  soma_orig_ap= soma_orig_ap+1
                              }
                              num_req = num_req+1
                              flag = 1
                              flag2= j+1
                              break
                       }
                  }
                  if (flag == 0) {
		       if (soma_ap(i)==1){
                                  soma_orig_ap2= soma_orig_ap2+1
                       }
                       extra_APs.x[num_extra] = apc_times.x[i]
                       num_extra = num_extra+1
                  }
         }
     }

   print "      Num required current pulses = ", num_req_APs, "  Num required that happened = ", num_req
   print "      Num_extra = ", num_extra

	if (num_req >= 0.8*num_req_APs) {  //there is AP following 80% of stimulus pulses
           return 1
     }

     return 0
}
//returns 1 is AP originated in soma, 0 otherwise
//ap_number is ordinal number of AP

func soma_ap(){local soma_ap, node0_ap

	ap_number=$1
        if ((AP_counters[num_ap_counters-1].n) <= ap_number || (AP_counters[0].n) <= ap_number) {
            return 0 //couldn't determine if AP originated in soma
        }

        soma_ap = AP_timerec[num_ap_counters-1].x[ap_number]
		node0_ap = AP_timerec[0].x[ap_number]

        if (soma_ap < node0_ap) {
              return 1
        }

        return 0
}

func trial() {
	Vamp = $1   //in volts
        print "                 Trial voltage = ", Vamp*polarity, " V"
	stimulus()
	init()
	run()

        if (response_to_stimulus() == 1) {
             return 1
        }
        return 0
}

//return voltage threshold in V
func threshold() {
	strength = 1.0   //in Volts
        low_limit = 1e-3
	lbound = low_limit
        up_limit = 10
	ubound = up_limit
	while (lbound == low_limit || ubound == up_limit) {
		excited = trial(strength)
		if (excited > 0) {
			ubound = strength
			strength = ubound/2
		}else {
	                lbound = strength
		        strength = 2*lbound
                }
                if(lbound>ubound)  return up_limit
                if (strength>ubound)  return up_limit
	}
	strength = (ubound+lbound)/2
        while((abs(ubound-lbound))>(abs(epsilon*ubound))) {
		excited = trial(strength)
		if (excited > 0) {
			ubound = strength
			strength = (ubound+lbound)/2
		}else {
			lbound = strength
			strength = (3*ubound+lbound)/4
		}
	}
          return strength  // threshold in Volts
        //strength is between ubound and lbound; ubound is returned because that is the
        //closest value to strength for which we know causes an AP (strength might not be enough)
}

//--------------------------------------------------------------
//finding AP initiation site
objref temp_vec
temp_vec = new Vector(num_ap_counters,0)
proc AP_init_site(){
        AP_site1 = -1   //node where AP appears first
        AP_site2 = -1   //node where AP appears second
	time1 = -1   //time of AP appearance at site1
	time2 = -1   //time of AP appearance at site2

        for qw = 0, num_ap_counters-1{
                 temp_vec.x[qw] = 100000  //set it to a big number so it doesn't interfere with finding shortest time
		 for wh=0, AP_counters[qw].n-1 {
			if (AP_timerec[qw].x[wh] > delay) {   //first AP when stim starts
				temp_vec.x[qw] = AP_timerec[qw].x[wh]
				break
			}
		 }
        }

        if (temp_vec.min() ==  100000) {
               print "NO AP during stimulation...."
        } else{
              //find index of AP counter that recorded shortest time (ie where AP first appeared)
              AP_site1 = temp_vec.min_ind()
              time1 = temp_vec.x[AP_site1]

	      //find second site for AP initialization
              temp_vec.x[AP_site1]= 100000
              AP_site2 = temp_vec.min_ind()  //2nd most depolarized node at time1
              time2 = temp_vec.x[AP_site2]
        }

}
//------------------------------------------------------------------------------
//calculate firing freq (#spikes/recording_time), average instantaneous firing freq, firing period (and standard deviations)
//consider time between time_beg and time_end (given as arguments)
//AP counter is distal node
proc calculate_freq(){ local time_beg, time_end, sum1, sum2, sum3, sum4, dd, kk, gg

    time_beg = $1
    time_end = $2

    sum1 = 0
    sum2 = 0
    sum3 = 0
    sum4 = 0
    dd = 0  //number of interspike intervals
    gg = 0 //number of spikes
    for kk = 0, apc.n-2 {
          if ((apc_times.x[kk] > time_beg) && (apc_times.x[kk+1] <= time_end)) {
             tmp5 = apc_times.x[kk+1]-apc_times.x[kk]
             sum1 = sum1 + tmp5
             sum2 = sum2 + tmp5^2
             sum3 = sum3 + (1000/tmp5)   //convert from ms to seconds, then to Hz
             sum4 = sum4 + (1000/tmp5)^2

	     order_freq.x[dd] = (1000/tmp5)   //convert from ms to seconds, then to Hz
	     dd=dd+1
        }
    }

    avg_period = 0
    avg_inst_freq = 0
    if (dd != 0)  {
            avg_period = sum1/dd
            avg_inst_freq = sum3/dd
    }
    for kk = 0, apc.n-1 {
	  if ((apc_times.x[kk] > time_beg) && (apc_times.x[kk] <= time_end)) gg = gg+1
    }
    avg_freq = 1000*gg/(time_end-time_beg)  //convert time from ms to sec

    std_period = 0
    std_inst_freq = 0
    if (dd-1 > 0)  {
            var_period = (sum2 - sum1^2/dd)/(dd-1)
            var_freq = (sum4 - sum3^2/dd)/(dd-1)
            if (var_period > 0) {
                std_period = sqrt(var_period)
            }
            if (var_freq > 0) {
                std_inst_freq = sqrt(var_freq)
            }
    }
}

//calculate firing freq (#spikes/recording_time), average instantaneous firing freq, firing period (and standard deviations)
//consider time between time_beg and time_end (given as arguments)
//use AP counter at the soma
proc calculate_freq_soma(){ local time_beg, time_end, sum1, sum2, sum3, sum4, dd, kk, gg

    time_beg = $1
    time_end = $2

    sum1 = 0
    sum2 = 0
    sum3 = 0
    sum4 = 0
    dd = 0  //number of interspike intervals
    gg = 0 //number of spikes
    for kk = 0, apc_soma.n-2 {
          if ((apc_times_soma.x[kk] > time_beg) && (apc_times_soma.x[kk+1] <= time_end)) {
             tmp5 = apc_times_soma.x[kk+1]-apc_times_soma.x[kk]
             sum1 = sum1 + tmp5
             sum2 = sum2 + tmp5^2
             sum3 = sum3 + (1000/tmp5)   //convert from ms to seconds, then to Hz
             sum4 = sum4 + (1000/tmp5)^2

	     order_freq.x[dd] = (1000/tmp5)   //convert from ms to seconds, then to Hz
	     dd=dd+1
        }
    }

    avg_period_soma = 0
    avg_inst_freq_soma = 0
    if (dd != 0)  {
            avg_period_soma = sum1/dd
            avg_inst_freq_soma = sum3/dd
    }
    for kk = 0, apc_soma.n-1 {
	  if ((apc_times_soma.x[kk] > time_beg) && (apc_times_soma.x[kk] <= time_end)) gg = gg+1
    }
    avg_freq_soma = 1000*gg/(time_end-time_beg)  //convert time from ms to sec

    std_period_soma = 0
    std_inst_freq_soma = 0
    if (dd-1 > 0)  {
            var_period = (sum2 - sum1^2/dd)/(dd-1)
            var_freq = (sum4 - sum3^2/dd)/(dd-1)
            if (var_period > 0) {
                std_period_soma = sqrt(var_period)
            }
            if (var_freq > 0) {
                std_inst_freq_soma = sqrt(var_freq)
            }
    }
}

//return number of APs in soma
//consider time between time_beg and time_end (given as arguments)
//AP counter is in soma
func calculate_soma_ap(){ local time_beg, time_end, gg, kk

    time_beg = $1
    time_end = $2

    gg = 0 //number of spikes
    for kk = 0, AP_counters[num_ap_counters-1].n-2 {
          if ((AP_timerec[num_ap_counters-1].x[kk] > time_beg) && (AP_timerec[num_ap_counters-1].x[kk+1] <= time_end)) {
		gg=gg+1
          }
    }
    return gg
}

//calculate time between end of stimulus pulse and first spontaneous spike
//return -1 if there are no spikes after stimulus ended
//wait wait_time milliseconds after stimulus ends before looking for an after stimulus spike
func calculate_delay(){ local wait_time

    wait_time = 2 //ms   //WAS 2

    for kk = 0, apc.n-1 {
        if (apc_times.x[kk] > delay+dur+wait_time) {
             return apc_times.x[kk]-(delay+dur)
        }
    }

    return -1
}

//calculate instantaneous firing frequency of first interspike interval during stimulus
//return -1 if there are no spikes (or only one) during stimulus
func calculate_first_int(){

    for kk = 0, apc.n-2 {
        if ((apc_times.x[kk] > delay) && (apc_times.x[kk+1] <= delay+dur)) {
             return 1000/(apc_times.x[kk+1]-apc_times.x[kk])  //convert to seconds, then to Hz
        }
    }

    return -1
}

//procedure that returns number of APs between time time_beg and time_end
func num_APs() { local count

	time_beg = $1
  	time_end = $2

	count = 0
	for kk = 0, apc.n-1 {
		if ((apc_times.x[kk] > time_beg) && (apc_times.x[kk] <= time_end)) {
	 		count = count + 1
		}
	}
	return count
}

//---------------------------------------
proc advance(){
	for i=0,total-1 {
		s[i].sec.e_extracellular(0.5)=(exIClmp.i)*Ve.x[i]	//mV//
	}
	fadvance()
}


//FOR FOURIER-WAVE STIM (COMMENT OUT FOR RECTANGULAR PULSES)
//feed values of extra_stim to IClamp amplitude. Values change at each time step (dt).
//It is important that 'play' be set up before finitialize, but actual values can be calculated later
extra_stim.play(&exIClmp.amp, dt)

finitialize(v_init)
fcurrent()


xopen("STN_dbs_fem_syn.ses")
tstop = delay+dur+100
//--------------------------------------------------------------------
objref cell_pos
cell_pos=new Vector(max_pop*3,0)

xopen(voltage_filename)  //load extracell. voltages from FEMLAB

//locations of neurons
//num_cells is number of cells in population (loaded with voltage data)
objectvar cell_coords[num_cells]   //coordinates of cells in population (their center coords)
for i =0, num_cells-1{
    cell_coords[i] = new Vector(3,0)
    cell_coords[i].x[0] = cell_pos.x[i*3]   //cell_pos is also loaded with voltage data
    cell_coords[i].x[1] = cell_pos.x[i*3+1]
    cell_coords[i].x[2] = cell_pos.x[i*3+2]
}


//Extracellular stimulus pulse frequency (Hz)
objref freq_vec
freq_vec = new Vector (5,0)
freq_vec.x[0]=2
freq_vec.x[1]=10
freq_vec.x[2]=50
freq_vec.x[3]=100
freq_vec.x[4]=136

//----------------------------------------------

print "Simulation running...\n"


objref f1, f2
f1 = new File()
f2 = new File()

f1.wopen(output_file1)
f2.wopen(output_file2)

f1.printf("DBS voltage pulse train stimulation of active STN neuron POPULATION\n\n")
f2.printf("DBS voltage pulse train stimulation of active STN neuron POPULATION\n\n")

f1.printf("Stimulus waveform used: %s\n", waveform_filename)
f1.printf("Voltage stimulus params: freq=variable Hz, pw=%f, delay=%f ms, dur=variable, amp=%f, polarity=%d, # test pulses = %d \n", pw, delay, Vamp, polarity, num_test_pulses)
f1.printf("Other params: tstop=%f ms, dt=%f ms, steps_per_ms=%f ms, AP_delay=%f, number of nodes=%d, epsilon=%f, AP_counter at node %d, ratio=%f\n", tstop, dt, steps_per_ms, AP_delay, axonnodes, epsilon, AP_ct_node, ratio)
f1.printf("GABA synapse in soma[1]: synstim = %f, synpw = %f, GABAsynAg = %f\n\n", synstim, synpw, GABAsynAg)

f2.printf("Voltage stimulus params: freq=variable Hz, pw=%f, delay=%f ms, dur=variable, amp=%f, polarity=%d, # test pulses = %d \n", pw, delay, Vamp, polarity, num_test_pulses)
f2.printf("Other params: tstop=%f ms, dt=%f ms, steps_per_ms=%f ms, AP_delay=%f, number of nodes=%d, epsilon=%f, AP_counter at node %d \n\n", tstop, dt, steps_per_ms, AP_delay, axonnodes, epsilon, AP_ct_node)
f2.printf("Cell locations (x,y,z)\n")
for i = 0, num_cells-1 {
   f2.printf("%f\t%f\t%f\n", cell_coords[i].x[0], cell_coords[i].x[1], cell_coords[i].x[2])
}

if (dt != 0.01) {
	print "dt is not 0.01!!!!!!!"
}

//main loop of the program...cycles thru frequencies, electrode locations
for ff = 0,0{  //0 to 4
   print "Stim_freq = ", freq
   f1.printf("\nStimulus voltage pulse frequency: %f\n", freq)
   f2.printf("\n\nStimulus voltage pulse frequency: %f\n", freq)

   calculate_required_APs()

   f2.printf("Times of stimulus pulses\n")
   f2.printf("Voltage Pulse \t Time \n")
   for i = 0, num_req_APs-1 {
          f2.printf("%d \t %f\n", i+1, required_APs.x[i])   //print times of voltage stimulus pulses
   }

   f1.printf("Cell # \t X \t Y \t Z \t Thresh voltage(V) \t ubound \t # required APs \t #extra APs during stim \t")
   f1.printf("Avg spikes/sec B(Hz) \t Avg Inst firing B (Hz) \t Inst rate STD B (Hz) \t Avg spikes/sec SOMA B(Hz) \t Avg Inst firing SOMA B (Hz) \t ")
   f1.printf("Avg spikes/sec D (Hz) \t Avg Inst firing D \t Inst rate STD D (Hz) \t Avg spikes/sec SOMA D(Hz) \t Avg Inst firing SOMA D (Hz) \t ")
   f1.printf("Avg spikes/sec A (Hz) \t Avg Inst firing A \t Inst rate STD A (Hz) \t Avg spikes/sec SOMA A(Hz) \t Avg Inst firing SOMA A (Hz) \t ")
   f1.printf("Avg freq D aft 100ms(Hz) \t Delay after stim (ms) \t")
   f1.printf("AP site#1 \t AP site#2 \t AP time1 \t AP time2\t soma_orig \t soma_orig2\t #soma AP during stim\n")

// ModelDB admin: demo run code instead of long loop (see main.hoc for authors code at this location)
   excited =trial(strength)
   print "ModelDB Administrator:  please main.hoc to see author supplied loop which this short demo has ommitted"

   //go thru different cells
   for jj=0, -1 { // orig code: num_cells-1{  //0, num_cells-1


 	print "     Cell# ", jj, ", Cell location ", cell_coords[jj].x[0], cell_coords[jj].x[1], cell_coords[jj].x[2]
   	f2.printf("\n\nCell position: %d %d %d\n", cell_coords[jj].x[0], cell_coords[jj].x[1], cell_coords[jj].x[2])

	for kk = 0,total-1{
		V.x[kk] = V_raw.x[jj*total+kk]
	}

	thresh_curr = threshold()
    //   thresh_curr = -10
       ubound = Vamp //in Volts
       trial(ubound)  //do it again to get AP times for determined threshold

       calculate_freq(delay, delay+dur)  //during stimulation
       AP_init_site()

	f1.printf("%d \t %f \t %f \t %f \t %f \t %f \t %d\t %d\t", jj,cell_coords[jj].x[0], cell_coords[jj].x[1], cell_coords[jj].x[2],thresh_curr, ubound, num_req, num_extra)


//before stimulation
	calculate_freq(0, delay)
	calculate_freq_soma(0, delay)
	print "Before stimulation"
	print "     avg_fr =" , avg_freq, "Avg Inst fr = ", avg_inst_freq, "Hz, std_fr = ", std_inst_freq
	f1.printf("%f \t %f \t %f \t %f \t %f \t ", avg_freq, avg_inst_freq, std_inst_freq,avg_freq_soma, avg_inst_freq_soma)

//during stimulation
	calculate_freq(delay, delay+dur)
	calculate_freq_soma(delay, delay+dur)
	print "During stimulation"
	print "     avg_fr =" , avg_freq, "Avg Inst fr = ", avg_inst_freq, "Hz, std_fr = ", std_inst_freq
	f1.printf("%f \t %f \t %f \t %f \t %f \t ", avg_freq, avg_inst_freq, std_inst_freq,avg_freq_soma, avg_inst_freq_soma)

//after stimulation
	calculate_freq(delay+dur, tstop)
	calculate_freq_soma(delay+dur, tstop)
	print "After stimulation"
	print "     avg_fr =" , avg_freq, "Avg Inst fr = ", avg_inst_freq, "Hz, std_fr = ", std_inst_freq
	f1.printf("%f \t %f \t %f \t %f \t %f \t ", avg_freq, avg_inst_freq, std_inst_freq,avg_freq_soma, avg_inst_freq_soma)
	spike_del = calculate_delay()
	print "     spike delay =" , spike_del, " ms"

	calculate_freq(delay+100, delay+dur)  //100ms after stim begins
	f1.printf("%f \t %f \t ", avg_freq, spike_del)
	f1.printf("%d \t %d \t %f \t %f \t %d \t %d \t %d\n", AP_site1, AP_site2, time1, time2, soma_orig_ap,soma_orig_ap2,calculate_soma_ap(delay,delay+dur))

       f2.printf("\n\nAll AP times for cell# %d(ms)\n", jj)
       for kk=0, apc.n-1 {
              f2.printf("\t %f\n", apc_times.x[kk])
       }
       f2.printf("Extra AP times during stimulation (ms) of cell# %d\n", jj)
       for kk=0, num_extra-1 {
           f2.printf("\t %f\n", extra_APs.x[kk])
       }
       f2.printf("Soma AP times all (ms) of cell# %d\n", jj)
       for kk=0, AP_counters[num_ap_counters-1].n-1 {
           f2.printf("\t %f\n", AP_timerec[num_ap_counters-1].x[kk])
       }
}
}

f1.close()
f2.close()

Loading data, please wait...