3D model of the olfactory bulb (Migliore et al. 2014)

 Download zip file 
Help downloading and running models
Accession:151681
This entry contains a link to a full HD version of movie 1 and the NEURON code of the paper: "Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb" by M Migliore, F Cavarretta, ML Hines, and GM Shepherd.
Reference:
1 . Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front Comput Neurosci 8:50 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): NMDA; Glutamate; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Activity Patterns; Bursting; Temporal Pattern Generation; Oscillations; Synchronization; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Action Potentials; Synaptic Integration; Unsupervised Learning; Olfaction;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu]; Migliore, Michele [Michele.Migliore at Yale.edu]; Cavarretta, Francesco [francescocavarretta at hotmail.it];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; NMDA; Glutamate; Gaba; I Na,t; I A; I K;
/
bulb3d
readme.html
ampanmda.mod *
distrt.mod *
fi.mod *
kamt.mod *
kdrmt.mod *
naxn.mod *
ThreshDetect.mod *
all2all.py *
balance.py *
bindict.py
BulbSurf.py
colors.py *
common.py
complexity.py *
custom_params.py *
customsim.py
destroy_model.py *
determine_connections.py
distribute.py *
fig7.py
fixnseg.hoc *
getmitral.py
gidfunc.py *
glom.py
granule.hoc *
granules.py
input-odors.txt *
loadbalutil.py *
lpt.py *
mayasyn.py
mgrs.py
misc.py
mitral.hoc *
mitral_dend_density.py
mkmitral.py
modeldata.py *
multisplit_distrib.py *
net_mitral_centric.py
odordisp.py *
odors.py *
odorstim.py
params.py
parrun.py
realgloms.txt *
runsim.py
split.py *
util.py *
weightsave.py *
                            
/* Sets nseg in each section to an odd value
   so that its segments are no longer than 
     d_lambda x the AC length constant
   at frequency freq in that section.

   Be sure to specify your own Ra and cm before calling geom_nseg()

   To understand why this works, 
   and the advantages of using an odd value for nseg,
   see  Hines, M.L. and Carnevale, N.T.
        NEURON: a tool for neuroscientists.
        The Neuroscientist 7:123-135, 2001.
*/

// these are reasonable values for most models
freq = 100      // Hz, frequency at which AC length constant will be computed
d_lambda = 0.1

func lambda_f() { local i, x1, x2, d1, d2, lam
        if (n3d() < 2) {
                return 1e5*sqrt(diam/(4*PI*$1*Ra*cm))
        }
// above was too inaccurate with large variation in 3d diameter
// so now we use all 3-d points to get a better approximate lambda
        x1 = arc3d(0)
        d1 = diam3d(0)
        lam = 0
        for i=1, n3d()-1 {
                x2 = arc3d(i)
                d2 = diam3d(i)
                lam += (x2 - x1)/sqrt(d1 + d2)
                x1 = x2   d1 = d2
        }
        //  length of the section in units of lambda
        lam *= sqrt(2) * 1e-5*sqrt(4*PI*$1*Ra*cm)

        return L/lam
}

proc geom_nseg() {
  soma area(0.5) // make sure diam reflects 3d points
  forall { nseg = int((L/(d_lambda*lambda_f(freq))+0.9)/2)*2 + 1  }
}



Loading data, please wait...