Simulated cortical color opponent receptive fields self-organize via STDP (Eguchi et al., 2014)

 Download zip file 
Help downloading and running models
Accession:152197
"... In this work, we address the problem of understanding the cortical processing of color information with a possible mechanism of the development of the patchy distribution of color selectivity via computational modeling. ... Our model of the early visual system consists of multiple topographically-arranged layers of excitatory and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity between layers. Layers are arranged based on anatomy of early visual pathways, and include a retina, lateral geniculate nucleus, and layered neocortex. ... After training with natural images, the neurons display heightened sensitivity to specific colors. ..."
Reference:
1 . Eguchi A, Neymotin SA, Stringer SM (2014) Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity Front. Neural Circuits 8:16 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex; Thalamus; Retina;
Cell Type(s): Hodgkin-Huxley neuron;
Channel(s): I K; I Na, leak;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Learning; STDP; Laminar Connectivity; Development; Information transfer; Sensory processing; Hebbian plasticity; Vision;
Implementer(s): Eguchi, Akihiro [akihiro.eguchi at psy.ox.ac.uk];
Search NeuronDB for information about:  GabaA; AMPA; I K; I Na, leak; Gaba; Glutamate;
 
/
colorModelDemo
                            
File not selected

<- Select file from this column.
Loading data, please wait...