ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/154096.

Electrostimulation to reduce synaptic scaling driven progression of Alzheimers (Rowan et al. 2014)

 Download zip file 
Help downloading and running models
Accession:154096
"... As cells die and synapses lose their drive, remaining cells suffer an initial decrease in activity. Neuronal homeostatic synaptic scaling then provides a feedback mechanism to restore activity. ... The scaling mechanism increases the firing rates of remaining cells in the network to compensate for decreases in network activity. However, this effect can itself become a pathology, ... Here, we present a mechanistic explanation of how directed brain stimulation might be expected to slow AD progression based on computational simulations in a 470-neuron biomimetic model of a neocortical column. ... "
Reference:
1 . Rowan MS, Neymotin SA, Lytton WW (2014) Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci 8:39 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Long-term Synaptic Plasticity; Aging/Alzheimer`s; Deep brain stimulation; Homeostasis;
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; Rowan, Mark [m.s.rowan at cs.bham.ac.uk];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; Gaba; Glutamate;
/
RowanEtAl2014
batchscripts
mod
README
alz.hoc
alzinfo.m
autotune.hoc *
basestdp.hoc *
batch.hoc *
batch2.hoc *
batchcommon
checkirreg.hoc *
clusterrun.sh
col.dot *
col.hoc *
comppowspec.hoc *
condisconcellfig.hoc *
condisconpowfig.hoc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
e2hubsdisconpow.hoc *
e2incconpow.hoc *
filtutils.hoc *
flexinput.hoc
geom.hoc *
graphplug.hoc *
grvec.hoc *
infot.hoc *
init.hoc *
labels.hoc *
load.hoc *
local.hoc *
makepopspikenq.hoc *
matfftpowplug.hoc *
matpmtmplug.hoc *
matpmtmsubpopplug.hoc *
matspecplug.hoc *
mosinit.hoc
network.hoc *
nload.hoc *
nqpplug.hoc *
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
plot.py
plotavg.py
plotbatch.sh
plotbatchcluster.sh
plotdeletions.py
plotntes.py
powchgtest.hoc *
pyhoc.py
python.hoc *
pywrap.hoc *
ratlfp.dat *
redE2.hoc *
run.hoc
runsim.sh
setup.hoc *
shufmua.hoc *
sim.hoc
simctrl.hoc *
spkts.hoc *
stats.hoc *
syncode.hoc *
vsampenplug.hoc *
writedata.hoc
xgetargs.hoc *
                            
// $Id: powchgtest.hoc,v 1.11 2010/10/10 23:18:02 samn Exp $ 


// make an nqs that has changes in power spectra as a function of hubs - uses data from batch.hoc60,62,63
// and relies on load.hoc87

newbatch=1
rcsopen("load.hoc",87)

declare("nqforig","o[2]")
nqforig=new NQS("/u/samn/intfcol/data/10oct10.10sep25.02_ISEED_1234_DVSEED_534023_SIMTYP_0_DISCONCOL_1__nqpmtm_E_I_MINUS_ALL_HUB_TYPES_B.nqs")
nqforig[1]=new NQS("/u/samn/intfcol/data/10sep25.02_ISEED_1234_DVSEED_534023_SIMTYP_0_DISCONCOL_1__nqpmtmpow_A.nqs")

objref vav[2][3][CTYPi],vev[2][3][CTYPi],vnhubs,vty,vf1,vf2//indices into vav,vev same meaning as into dbase
{vnhubs=new Vector() vnhubs.indgen(1,10,1)}
{vty=new Vector() vty.append(E2,I2,E4,I4,E5R,E5B,I5,E6,I6)}
{vf1=new Vector() vf1.append(4,12,30) vf2=new Vector() vf2.append(12,30,100)}
objref lop1,lop2,le
{lop1=new List() lop1.append(new String(">=")) lop1.append(new String(">")) lop1.append(new String(">="))}
{lop2=new List() lop2.append(new String("<=")) lop2.append(new String("<")) lop2.append(new String("<="))}
{le=new List() le.append(new String("E")) le.append(new String("I"))}

//dbase stores baseline level of power for each column, in theta, beta, gamma bands
double dbase[numcols][CTYPi][vf1.size] // 3rd dim = 0:theta,1:beta,2:gamma, 3rd dim = column 

for i=0,8 { // store the baseline values in dbase
  for vtr(&j,vty) { ic=ice(j)
    for k=0,2 { 
      {f1=vf1.x(k)  f2=vf2.x(k)}
      if(ic) {
        sprint(tstr,"C%dintraE",i)
      } else {
        sprint(tstr,"C%dintra%sMINUS%s",i,le.o(ic).s,CTYP.o(j).s)
      }
      if(!nqforig[ic].select("f",lop1.o(k).s,f1,"f",lop2.o(k).s,f2)) print "PROB!!!!!!!!!!!!!!!!!!!!!!"
      dbase[i][j][k]=nqforig[ic].getcol(tstr).sum
    }
  }
}

objref nqchg // nqs stores percent changes from baseline after alterations
nqchg=new NQS("ty","nhubs","col","pchange","minf","maxf")
for i=0,nqbatch.v.size-1 {
  nq=nqbatch.get("nqpmtm",i).o
  SIMTYP=nqbatch.get("SIMTYP",i).x
  NHUBS=nqbatch.get("NHUBS",i).x
  ic=ice(SIMTYP)
  for j=0,numcols-1 {
    if(ic) sprint(tstr,"C%dintraE",j) else sprint(tstr,"C%dintraEMINUS",j)
    for k=0,2 {
      {f1=vf1.x(k) f2=vf2.x(k)}
      if(!nq.select("f",lop1.o(k).s,f1,"f",lop2.o(k).s,f2)) print "BORP!!!!!!!!!!!!!!!!!!!!!!!!!"
      pchg = 100.0 * (nq.getcol(tstr).sum - dbase[j][SIMTYP][k]) / dbase[j][SIMTYP][k]
      nqchg.append(SIMTYP,NHUBS,j,pchg,f1,f2)
    }
  }  
}

//* mkavgerr - setup avg+/-stderr
proc mkavgerr () { local i,j,k,ic,fidx,f1,f2
  for vtr(&i,vty) { 
    ic=ice(i)
    for j=0,2{vav[ic][j][i]=new Vector() vev[ic][j][i]=new Vector() vav[ic][j][i].label(CTYP.o(i).s)}
  }
  for fidx=0,2 {
    f1=vf1.x(fidx) f2=vf2.x(fidx)
    for vtr(&i,vty) { ic=ice(i)
      for j=1,10 {
        if(!nqchg.select("ty",i,"minf",f1,"maxf",f2,"nhubs",j)) {
          print "didn't find ", CTYP.o(i).s, " minf ", f1, " maxf " , f2 , " nhubs " , j
        }
        vav[ic][fidx][i].append(nqchg.getcol("pchange").mean)
        vev[ic][fidx][i].append(nqchg.getcol("pchange").stderr)
      }
    }
  }
}
mkavgerr()
//* drit(
proc drit () { local f1,f2,i,j,k,fidx,ic
  fidx=$1 f1=vf1.x(fidx) f2=vf2.x(fidx)
  ic=$2 j=0
  for vtr(&i,vty) if( (ic && ice(i)) || (!ic && !ice(i)) ) {
    g.color(j+1)
    vav[ic][fidx][i].mark(g,vnhubs,"O",12,j+1,1)
    vav[ic][fidx][i].ploterr(g,vnhubs,vev[ic][fidx][i],5,j+1,4)
    if(ic) {
      vav[ic][fidx][i].plot(g,vnhubs,j+1,1)
    }
    j+=1
  }
}
//* prit - print out stats
proc prit () { local i,j,fidx,f1,f2
  nqchg.verbose=0
  for fidx=0,2 {
    {f1=vf1.x(fidx) f2=vf2.x(fidx)}
    for vtr(&i,vty) for j=1,10 if(nqchg.select("ty",i,"nhubs",j,"minf",f1,"maxf",f2)) {
      print CTYP.o(i).s," ",j," hubs, ",f1," - ",f2," Hz : ",nqchg.getcol("pchange").mean,"+/-",nqchg.getcol("pchange").stderr
    }
  }
  nqchg.verbose=1
}

Loading data, please wait...