Effects of spinal cord stimulation on WDR dorsal horn network (Zhang et al 2014)

 Download zip file 
Help downloading and running models
Accession:168414
" ... To study the mechanisms underlying SCS (Spinal cord stimulation), we constructed a biophysically-based network model of the dorsal horn circuit consisting of interconnected dorsal horn interneurons and a wide dynamic range (WDR) projection neuron and representations of both local and surround receptive field inhibition. We validated the network model by reproducing cellular and network responses relevant to pain processing including wind-up, A-fiber mediated inhibition, and surround receptive field inhibition. ..." See paper for more.
Reference:
1 . Zhang TC, Janik JJ, Grill WM (2014) Modeling effects of spinal cord stimulation on wide-dynamic range dorsal horn neurons: influence of stimulation frequency and GABAergic inhibition. J Neurophysiol 112:552-67 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Wide dynamic range neuron;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate; Glycine;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s): Zhang, Tianhe [tz5@duke.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Glutamate; Glycine;
/
ZhangEtAl2014
Critical Mod Files
AMPA_DynSyn.mod
B_A.mod
B_Adapt.mod
B_DR.mod
B_NA.mod
CaIntraCellDyn.mod *
GABAa_DynSyn.mod *
GABAb_DynSyn.mod *
Glycine_DynSyn.mod
HH2.mod *
HH2new.mod *
iCaAN.mod *
iCaL.mod
iKCa.mod *
iNaP.mod *
KDR.mod
KDRI.mod
NK1_DynSyn.mod *
NMDA_DynSyn.mod *
SS.mod
vsource.mod *
                            
TITLE high threshold calcium current (L-current)

COMMENT
        *********************************************
        reference:      McCormick & Huguenard (1992) 
			J.Neurophysiology 68(4), 1384-1400
        found in:       hippocampal pyramidal cells
        *********************************************
	Assembled for MyFirstNEURON by Arthur Houweling
	
ENDCOMMENT




INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}


NEURON {
	SUFFIX iCaL
	USEION ca READ cai,cao WRITE ica
        RANGE pcabar, m_inf, tau_m, ica
}

UNITS {
	(mA)	= (milliamp)
	(mV)	= (millivolt)
	(mM)	= (milli/liter)
        FARADAY = 96480 (coul)
        R       = 8.314 (volt-coul/degC)
}

PARAMETER {
	v			(mV)
	celsius			(degC)
        dt              	(ms)
	cai			(mM)
	cao			(mM)
	pcabar= 0.000276	(cm/s)		
}

STATE {
	m
}

ASSIGNED {
	ica		(mA/cm2)
	tau_m		(ms)
	m_inf 
	tadj
}

BREAKPOINT { 
	SOLVE states :METHOD euler
	ica = pcabar * m*m * ghk(v,cai,cao,2)
}

:DERIVATIVE states {
:       rates(v)
:
:       m'= (m_inf-m) / tau_m 
:}
  
PROCEDURE states() {
        rates(v)
	
        m= m + (1-exp(-dt/tau_m))*(m_inf-m)
	:printf("\n iCaL tau_m=%g", tau_m)
}

UNITSOFF

INITIAL {
	tadj = 3.0 ^ ((celsius-23.5)/10)
	rates(v)
	m = m_inf
}

FUNCTION ghk( v(mV), ci(mM), co(mM), z)  (millicoul/cm3) {
        LOCAL e, w
        w = v * (.001) * z*FARADAY / (R*(celsius+273.16))
        
	if (fabs(w)>1e-4) 
          { e = w / (exp(w)-1) }
        else
	: denominator is small -> Taylor series
        { e = 1-w/2 }
	
        ghk = - (.001) * z*FARADAY * (co-ci*exp(w)) * e
}
UNITSOFF

PROCEDURE rates(v(mV)) { LOCAL a,b
	a = 1.6 / (1+ exp(-0.072*(v-5)))
	b = 0.02 * vtrap( -(v-1.31), 5.36)

	tau_m = 1/(a+b) / tadj
	m_inf = 1/(1+exp((v+10)/-10))
}

FUNCTION vtrap(x,c) { 
	: Traps for 0 in denominator of rate equations
        if (fabs(x/c) < 1e-6) {
          vtrap = c + x/2 }
        else {
          vtrap = x / (1-exp(-x/c)) }
}
UNITSON

Loading data, please wait...