Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)

 Download zip file 
Help downloading and running models
Accession:168858
Layer 3 (L3) pyramidal neurons in the lateral prefrontal cortex (LPFC) of rhesus monkeys exhibit dendritic regression, spine loss and increased action potential (AP) firing rates during normal aging. The relationship between these structural and functional alterations, if any, is unknown. Computational models using the digital reconstructions with Hodgkin-Huxley and AMPA channels allowed us to assess relationships between demonstrated age-related changes and to predict physiological changes that have not yet been tested empirically. Tuning passive parameters for each model predicted significantly higher membrane resistance (Rm) in aged versus young neurons. This Rm increase alone did not account for the empirically observed fI-curves, but coupling these Rm values with subtle differences in morphology and membrane capacitance Cm did. The predicted differences in passive parameters (or other parameters with similar effects) are mathematically plausible, but must be tested empirically.
Reference:
1 . Coskren PJ, Luebke JI, Kabaso D, Wearne SL, Yadav A, Rumbell T, Hof PR, Weaver CM (2015) Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex. J Comput Neurosci 38:263-83 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Influence of Dendritic Geometry; Detailed Neuronal Models; Action Potentials; Aging/Alzheimer`s;
Implementer(s): Weaver, Christina [christina.weaver at fandm.edu];
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; I Na,t; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP;
/
CoskrenEtAl2015
HHmodel
models
README.html
cad.mod *
cal.mod
cat.mod
hcurrent.mod
k2.mod
ka.mod
kahp.mod *
kc.mod
kdr.mod
km.mod
kvz_nature.mod *
mar.mod
max.mod
naf.mod
nap.mod
naz_nature.mod *
origlen.mod *
pass_wRel.mod
peak.mod *
shunt.mod
skahp.mod
Voffset.mod
vsource.mod *
aniruddha_young10axon.hoc
coskren_make_gui.hoc
fixnseg.hoc
init.hoc
linear_conductances_traub.hoc
main_CoskrenEtAl_extTraub.hoc
make_gui.hoc
make_gui2.hoc
mosinit.hoc
readcell_nomechanisms.hoc
scaleRm_aug3f.hoc
screenshot.png
Vkeep.ses
                            
TITLE Potasium C type current for RD Traub, J Neurophysiol 89:909-921, 2003

COMMENT

	Implemented by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)
        Revised by Aniruddha Yadav 13 Sep 2007--incorporating shifts (kshift)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
}
 
NEURON { 
	SUFFIX kc
	USEION k READ ek WRITE ik
	USEION ca READ cai
	RANGE  gbar, ik, kshift
}

PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v ek 		(mV)  
	cai		(1)
        kshift= -3.0    (mV)
} 

ASSIGNED { 
	ik 		(mA/cm2) 
	alpha beta	(/ms)
}
 
STATE {
	m
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	if( 0.004 * cai < 1 ) {
		ik = gbar * m * 0.004 * cai * ( v - ek ) 
	}else{
		ik = gbar * m * ( v - ek ) 
	}
}
 
INITIAL { 
	settables(v) 
	m = alpha / ( alpha + beta )
	m = 0
}
 
DERIVATIVE states { 
	settables(v) 
	m' = alpha * ( 1 - m ) - beta * m 
}

UNITSOFF 

PROCEDURE settables(v) { 
	TABLE alpha, beta FROM -120 TO 40 WITH 641

	if( v < -10.0 ) {
		alpha = 2 / 37.95 * ( exp( ( v+ kshift + 50 ) / 11 - ( v + kshift + 53.5 ) / 27 ) )

		: Note that there is typo in the paper - missing minus sign in the front of 'v'
		beta  = 2 * exp( ( - v - kshift - 53.5 ) / 27 ) - alpha
	}else{
		alpha = 2 * exp( ( - v - kshift - 53.5 ) / 27 )
		beta  = 0
	}
}

UNITSON

Loading data, please wait...