ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/168874.

Neuronal dendrite calcium wave model (Neymotin et al, 2015)

 Download zip file 
Help downloading and running models
Accession:168874
"... We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP3 ), diffusible Ca2+, IP3 receptors (IP3 Rs), endoplasmic reticulum (ER) Ca2+ leak, and ER pump (SERCA) on ER. ... At least two modes of Ca2+ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell; and a pseudo-saltatory model where Ca2+ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP3 R distribution: 1. continuous homogeneous ER, 2. hotspots with increased IP3R density (IP3 R hotspots), 3. areas of increased ER density (ER stacks). All three modes produced Ca2+ waves with velocities similar to those measured in vitro (~50 - 90µm /sec). ... The measures were sensitive to changes in density and spacing of IP3 R hotspots and stacks. ... An extended electrochemical model, including voltage gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca2+ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP3 Rs and SERCA could allow modulation of Ca2+ wave propagation in diseases where Ca2+ dysregulation has been implicated. "
Reference:
1 . Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton WW (2015) Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Comput 27:898-924 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell;
Channel(s): I T low threshold; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I_SERCA; I_KD; Ca pump;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Calcium waves; Reaction-diffusion;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; McDougal, Robert [robert.mcdougal at yale.edu]; Sherif, Mohamed [mohamed.sherif.md at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; AMPA; I T low threshold; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I_SERCA; I_KD; Ca pump; Glutamate;
/
ca1dDemo
data
readme.txt
cagk.mod *
cal_mig.mod
can_mig.mod
cat_mig.mod
kaprox.mod *
kdrca1.mod *
km.mod *
misc.mod *
na3n.mod *
naf.mod
NMDA.mod
stats.mod *
vecst.mod *
AMPA0.cfg
AMPA150.cfg
analysisCode.py
batch.py
cawave.cfg
cawave.py
conf.py
geneval_cvode.inc *
misc.h *
netcon.inc *
nqs.hoc
nqs.py
plot_fig11.py
setup.hoc *
vector.py *
                            
TITLE CA1 KM channel from Mala Shah
: M. Migliore June 2006

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
	ek
	celsius 	(degC)
	gbar=.0001 	(mho/cm2)
        vhalfl=-40   	(mV)
	kl=-10
        vhalft=-42   	(mV)
        a0t=0.003      	(/ms)
        zetat=7    	(1)
        gmt=.4   	(1)
	q10=5
	b0=60
	st=1
	sh =6
}


NEURON {
	SUFFIX km
	USEION k READ ek WRITE ik
        RANGE  gbar,ik, sh
      GLOBAL inf, tau
}

STATE {
        m
}

ASSIGNED {
	ik (mA/cm2)
        inf
	tau
        taua
	taub
}

INITIAL {
	rate(v)
	m=inf
}


BREAKPOINT {
	SOLVE state METHOD cnexp
	ik = gbar*m^st*(v-ek)
}


FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft-sh)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft-sh)) 
}

DERIVATIVE state {
        rate(v)
	m' = (inf - m)/tau
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-35)/10)
        inf = (1/(1 + exp((v-vhalfl-sh)/kl)))
        a = alpt(v)
        tau = b0 + bett(v)/(a0t*(1+a))
}















Loading data, please wait...