Layer 5 Pyramidal Neuron (Shai et al., 2015)

 Download zip file 
Help downloading and running models
Accession:180373
This work contains a NEURON model for a layer 5 pyramidal neuron (based on Hay et al., 2011) with distributed groups of synapses across the basal and tuft dendrites. The results of that simulation are used to fit a phenomenological model, which is also included in this file.
Reference:
1 . Shai AS, Anastassiou CA, Larkum ME, Koch C (2015) Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS Comput Biol 11:e1004090 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Dendritic Action Potentials; Active Dendrites;
Implementer(s):
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Glutamate;
/
ShaiEtAl2015
mod
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
SK_E2.mod *
SKv3_1.mod *
                            
: Dynamics that track inside calcium concentration
: modified from Destexhe et al. 1994

NEURON	{
	SUFFIX CaDynamics_E2
	USEION ca READ ica WRITE cai
	RANGE decay, gamma, minCai, depth
}

UNITS	{
	(mV) = (millivolt)
	(mA) = (milliamp)
	FARADAY = (faraday) (coulombs)
	(molar) = (1/liter)
	(mM) = (millimolar)
	(um)	= (micron)
}

PARAMETER	{
	gamma = 0.05 : percent of free calcium (not buffered)
	decay = 80 (ms) : rate of removal of calcium
	depth = 0.1 (um) : depth of shell
	minCai = 1e-4 (mM)
}

ASSIGNED	{ica (mA/cm2)}

STATE	{
	cai (mM)
	}

BREAKPOINT	{ SOLVE states METHOD cnexp }

DERIVATIVE states	{
	cai' = -(10000)*(ica*gamma/(2*FARADAY*depth)) - (cai - minCai)/decay
}

Loading data, please wait...